四年级奥数题及答案(小学四年级奥数题及答案5篇)
本文目录
- 小学四年级奥数题及答案5篇
- 小学四年级奥数题及答案【五篇】
- 四年级奥数题及答案:数阵图【三篇】
- 小学四年级奥数题及答案6篇
- 小学四年级奥数题及参考答案
- 四年级奥数题及解答【五篇】
- 四年级小学奥数题及答案【五篇】
- 小学四年级奥数题及答案解析(三篇)
- 小学四年级奥数题及解答(三篇)
- 小学四年级奥数题及答案大全
小学四年级奥数题及答案5篇
【 #小学奥数# 导语】奥数是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。以下是 整理的《小学四年级奥数题及答案5篇》相关资料,希望帮助到您。
1.小学四年级奥数题及答案
1、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
解:已修的天数:
(720×3-1200)÷80
=960÷80
=12(天)
公路全长:
(720+80)×12+1200
=800×12+1200
=9600+1200
=10800(米)
答:这条公路全长10800米。
2、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双.
3、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
2.小学四年级奥数题及答案
1、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
这堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:这堆煤有6000千克。
2、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的`钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
也可以用方程解:
设一枝铅笔X元,则一本练习本为元。
8X+5×=3.8-0.45
64X+19-25X=30.4-3.6
39X=7.8
X=0.2
答:每支铅笔0.2元。
3、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解:卡车的数量:
360÷
=360÷
=360÷30
=12(辆)
客车的数量:
360÷
=360÷
=360÷40
=9(辆)
答:可用卡车12辆,客车9辆。
3.小学四年级奥数题及答案
1、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
2、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
3、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?
想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
解:9-(16-9)
=9-7
=2(千克)
答:桶重2千克。
4.小学四年级奥数题及答案
1、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
解:15×5÷(5-2)=25(千克)
答:原来每桶油重25千克。
2、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
3、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
5.小学四年级奥数题及答案
1、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。
解:(10-5.5)×2=9(千克)
答:原来有油9千克。
2、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
解:(22-10)÷(5-2)
=12÷3
=4(千克)
答:桶里原有水4千克。
3、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
答:原来小红有23本,小华有13本。
小学四年级奥数题及答案【五篇】
【 #小学奥数# 导语】奥数是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。以下是 无 整理的《小学四年级奥数题及答案【五篇】》相关资料,希望帮助到您。
1.小学四年级奥数题及答案
1、学校提高班的同学去划船,他们算了一下,如果增加一条船。正好每条船坐6人;如果减少一条船,正好每条船坐9人。问这个班共有多少同学?
先增加一条船,正好每条船坐6人,然后去掉两条船,就会余下12名同学,改为每船正好坐9人,即每条船增加3人正好把余下的12名同学全部安排上去,所以现在还有:
12÷3=4(条)船,而全班同学的人数为9×4=36(人)。
2、马小哈做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111。问正确答案应是几?
答案与解析:
解析:马小虎错把减数个位上1看成7,使差减少7-1=6,而把十位上的7看成1,使差增加70-10=60。因此这道题归结为某数减6,加60得111,求某数是几的问题。
解:111-(70-10)+(7-1)=57答:正确的答案是57。
2.小学四年级奥数题及答案
1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?
上下坡答案:
设路程为180,则上坡和下坡均是90。设走平路的速度是2,则下坡速度是3。走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60走与上坡同样距离的平路时用时间90/2=45因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
小学四年级奥数题及答案解析篇五
2、大强和小强共有100个苹果,大强的苹果比小强的两倍还多4个,大强有多少个苹果,小强有多少个苹果?
答案与解析:
把大强的苹果去掉4个后,大强的苹果数就是小强的两倍,这时候的苹果总数相当于小强苹果数的三倍。
所以小强有苹果(100-4)÷3=32(个),
所以大强有苹果100-32=68(个)
3.小学四年级奥数题及答案
1、有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
解:28×3+33×5-30×7=39。
2、有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
3、小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
4、妈妈每4天要去一次副食商店,每5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
解:每20天去9次,9÷20×7=3.15(次)。
5、乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
解:以甲数为7份,则乙、丙两数共13×2=26(份)
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:7。
4.小学四年级奥数题及答案
1、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)
2、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
3、甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?
解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
5.小学四年级奥数题及答案
1、一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
2、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?
解:甲乙速度差为10/5=2
速度比为(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
3、在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?
解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程
10(a-b)=20(a-3b),
解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。
四年级奥数题及答案:数阵图【三篇】
【 #小学奥数# 导语】海阔凭你跃,天高任你飞。愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。学习的敌人是自己的知足,要使自己学一点东西,必需从不自满开始。以下是 为大家整理的《四年级奥数题及答案:数阵图【三篇】》 供您查阅。
【第一篇】
1.将1~6这六个自然数分别填入右图的六个○中,使得三角形每条边上的三个数之和都相等,请给出所有填法。
[ 分析 ]这道题与例题不同的是不知道每边的三数之和等于几.因为三个重叠数都重叠了一次,由重叠数之和=每边三数之和,得到每边的三数之和等于重叠数之和重叠数之和.因为每边的三数之和是整数,所以重叠数之和应是3的倍数.考虑到重叠数是1~6中的数,所以三个重叠数之和只能是6,9,12或15,对应的每条边上的三数之和就是9,10,11或12.与例题的方法类似,可得下图的四种填法: 每边三数之和=9每边三数之和=10每边三数之和=11每边三数之和=12.
2.把1~7这七个数分别填入下图的○内,使每条线段上三个○内数的和相等,请给出所有填法。
【第二篇】
1.这个表中100在哪两行行?前两行的和是多少?前三行呢? 解答: 看最右侧一列,第一行是1 ,第二行是2 ,所以100在第99 行和第100行.前两行和为1+2+3=6 ,前三行和为 1+2+3+3+4+5=18 2.自然数按从小到大的顺序排成螺旋形.在2处拐第-个弯,在3处拐第二个弯,在5处拐第三个弯…问拐第二十个弯的地方是哪-个数? 解答 :这是一个十分经典的题目,法1是参考书上的解答,其解答固然巧妙,帮助孩子拓宽眼界,但却没什么头绪去找到这样一个办法,法2将给大家介绍一个"通用"的思路,它能帮助你解决更多的问题. (法1):过1画-条横线,拐弯,画竖线;再拐弯,画横线;….到第二十个拐弯处,共有11条竖线, 10条横线.其中的数共11×10+1=111 ,即拐第二十个弯的地方是 111. (法2):先把拐角处数字找出来,观察规律,我们发现(利用画图法分析差值,发现此规律):
【第三篇】
1.下图是10枚硬币,移动其中1枚硬币,使每一行上都有6枚硬币。
2.将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。 如果每条直线上的三个数之和等于10,那么又该如何填?
1. 分析与解 : 10枚硬币摆两行,一般来说每行有10÷2=5(枚)。图中的两行却是一行5枚一行6枚,原因是中间有1枚在两行的交叉点上,所以出现了5+6>10。由于题中并没有规定每个位置上只准放一枚,所以,只要使其中1枚硬币在两直行的交叉点上再"重复"一下,即在两行的交叉点上重叠地放2枚硬币(见右上图),就可达到目的。
2. 【 小结 】数阵图中,中间的重叠数最重要。重叠数一般是要求填入数中的头中尾,本题的头中尾是1、4、7.所以要求每条线上为12,中间为4;要求得10的话,中间为1,假如题目再要求得14的话,那么中间就是7了。中间的重叠数确定好之后,两边的数就好填了,直接分组就可以了。
小学四年级奥数题及答案6篇
【 #小学奥数# 导语】奥数题一般都很有趣味性,难度也大,需要人的大脑反应能力很强很快,自然对大脑的快速反应能力的锻炼有实际意义。 以下是 无 整理的《小学四年级奥数题及答案6篇》相关资料,希望帮助到您。
1.小学四年级奥数题及答案 篇一
1、某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个床位。该校有宿舍_____间,学生_____人。
解:(14+4)÷(7-5)=9(间)
9×5+14=59(人)。
2、用库存化肥给麦田施肥,如果每公亩施6千克,就缺200千克;如果每公亩施5千克,则剩下300千克,那么有_____公亩麦田,库存化肥_____千克。
解:(300+200)÷(6-5)=500(公亩);
500×5+300=2800(千克)。
3、某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人。参加劳动的有_____人。
解:10÷(12-10)=5(组),5×10=50(人)
2.小学四年级奥数题及答案 篇二
1、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。
2、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?
分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。
3.小学四年级奥数题及答案 篇三
1、有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。
(1)如果放牧16头牛,几天可以吃完牧草?
(2)要使牧草永远吃不完,最多可放多少头牛?
解答:
(1)草的生长速度:(21×8-24×6)÷(8-6)=12(份)
原有草量:21×8-12×8=72(份)
16头牛可吃:72÷(16-12)=18(天)
(2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数
所以最多只能放12头牛。
2、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟
然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟
最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
4.小学四年级奥数题及答案 篇四
1、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?
解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米
2、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?
解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
5.小学四年级奥数题及答案 篇五
1、小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2、小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3、小军说:"我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?"同学们猜猜小军一共钓了几条鱼?
4、6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5、一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
参考答案:
1、20只,包括手指甲和脚指甲。
2、因为他付给售货员40元,所以只找给他2元。
3、0条,因为他钓的鱼是不存在的。
4、6里,36里。
5、只要教小狗转过身子用后脚抓骨头,就行了。
6.小学四年级奥数题及答案 篇六
1、某工人与老板签订了一份30天的劳务合同,工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元,该工人合同到期后并没有拿到报酬,则他最多工作了多少天?
答案:6天
解析:假设他没有休息,那么将会得到:30×48=1440元,休息一天则会少48+12=60元。所以休息了1440÷60=24天,所以工作了30-24=6天。
2、有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数。如果第二个六位数是第一个六位数的5倍,那么这个五位数是多少?
答案:14285
解析:设5位数是X,那么第一个六位数就是10X+7,第二个六位数就是700000+X,列出方程:700000+X=5×(10X+7),解得X=14285。
3、学生问老师今年有多少岁,老师说:“当我像你这么大时,我的年龄是你的年龄10倍,当你像我这么大时,我已经56岁了”,那么问老师今年多少岁?
答案:38岁
解析:假设老师与学生一样大时候,学生为1份,老师就是10份,此时年龄差是9份,所以现在学生为10份,老师为19份。当学生像老师这么大时,学生为19份,老师为28份,此时老师年龄是56岁,每一份就代表2岁,所以老师今年是19×2=38岁。
小学四年级奥数题及参考答案
【 #小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。以下是 无 整理的《小学四年级奥数题及参考答案》相关资料,希望帮助到您。
小学四年级奥数题及参考答案篇一
1、计算236×37×27
参考答案:
236×37×27
=236×(37×3×9)
=236×(111×9)
=236×999
=236×(1000-1)
=236000-236
=235764
2、计算333×334+999×222
参考答案:
333×334+999×222
=333×334+333×(3×222)
=333×(334+666)
=333×1000
=333000
小学四年级奥数题及参考答案篇二
1、自然数1到100中,含有数字“3”的数有几个,不含数字“3”的有几个?
2、有1杯苹果汁,小李喝了半杯后,将它加满水,然后他又喝了半杯,再加满水,最后全部喝完。问,小李喝的水多还是果汁多?
参考答案:
1、个位有3的总共有10×1=10个
十位有3的总共有10×1=10个
因33这数出现两次
则含有3的数总共有10+10-1=19个
则不含有3的数共有100-19=81个
2、一样多。从头到尾共喝了一杯苹果汁。第一次加了半杯水,后来又加半杯水,一共加了一杯水,所以喝的苹果汁和水是一样多的。
小学四年级奥数题及参考答案篇三
43位同学,他们身上带的钱从8分到5角,钱数都各不相同,每个同学都把身上带的全部钱各自买了画片,画片只有两种,3分一张和5分一张,每人都尽量多买5分一张的画片。问所买的3分画片的总数是多少张?
参考答案:
9+16+32+27=84(张)
【小结】(1)从8分到5角就是以"分"为单位,从8到50的43个连续自然数,这正好与43个同学一一对应。
(2)每个同学都把身上带的全部钱各自买画片,就是每人都不许有余钱。
(3)每人既要把钱花光,又要尽量多买5分一张的画片。
我们把钱数是5的倍数(0、15、20、25、30、35、40、45、50)的九个人分为一类。他们不能买3分一张的画片。
钱数被5除余3分(8、13、18、23、28、33、38、43、48)的九个人分为另一类。他们可以买1张3分的画片,9人共买9张。
钱数被5除余1分(11、16、21、26、31、36、41、46)的八个人分为第三类。因为他们身上所余的钱数不是3的倍数,只好退下一个5分与余数1分合成6分,这样每人可以买2张3分画片,8人共买:2×8=16(张)。
用同样的方法,把钱数被5除余2分的8个人再分为一类,每人可买3分画片4张,共买:4×8=32(张)。
把钱数被5除余4分的9个人也分为一类,他们每人可买3分画片3张,共买:3×9=27(张)。
因此,他们所买3分画片的总数共是:9+16+32+27=84(张)。
四年级奥数题及解答【五篇】
【第一篇:流水行船】
静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船? 答案与解析:
甲船顺水速度:22+4=26(千米/小时),乙船顺水速度:18+4=22(千米/小时),乙船先行路程:22×2=44(千米),甲船追上乙船时间:44÷(26-22)=11(小时)。
答:甲船11小时可以追上乙船。
【第二篇:接水】
6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少? 答案与解析:第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候; 第6个人接水时,只有他1个人等候.可见,等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会最少,因此,应当把接水时间按从少到多顺序 排列等候接水,这个最短时间是3×6+4×5+5×4+6×3+7×2+10=100 (分).
【第三篇:摸球】
袋子里有若干个球,小明每次拿出其中的一半再放回1个球,这样共操作了5次,袋中还有3个球,问袋中原有多少个球? 答案与解析:
利用倒推法从第5次操作后向前倒推,列表如下:
操作次数 袋中球数(个)
初始状态 (18-1)×2=34
第一次操作后 (10-1)×2=18
第二次操作后 (6-1)×2=10
第三次操作后 (4-1)×2=6
第四次操作后 (3-1)×2=4
第五次操作后 3
所以袋中原有球34个。
【第四篇:一堆梨】
从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下中的一半放入第四堆,最后又吃掉第一堆中的两个梨,这时第一堆中还有48个,求原来第一堆中有多少个? 答案与解析:
原来第一堆中有: ×2=270(个)
【第五篇:币值】
有30个2分硬币和8个5分硬币,这些硬币值的总和正好是1元。用这些硬币不能组成1元之内的币值是_______。 答案与解析:
1分、3分、97分和99分四种。
解析:因为硬币有2分、5分两种,显然不能组成1分和3分币值。
同时根据硬币的总额为1元=100分的条件可知,也不可能组成100-1=99(分)和100-3=97(分)币值。
因此,用这些硬币不能组成1元之内的币值是1分、3分、97分和99分。
四年级小学奥数题及答案【五篇】
【第一篇:养兔专业户】
明明家是养兔专业户。一天,明明第一次称3只大兔和4只小兔,共重6.5千克;第二次称4只大兔和3只小兔,共重7.5千克。假定大兔的重量都一样,小兔的重量也都一样。小朋友,你能很快地口算出每只大兔和每只小兔各重多少千克吗?
答案与解析:如果第一次去掉一只小兔,换上一只大兔,那就和第二次称重的情况一样,可见一只大兔比一只小兔重:7.5-6.5=1(千克)。如果把第一次称时的大兔全部换成小兔,重量就要减去3千克,这时7只小兔的重量是:6.5-3=3.5(千克),那么每只小兔的重量便是0.5千克。
根据同样的道理,把第二次称重时的小兔全部换成大兔,就要增加3千克,得10.5千克,即7只大兔共重10.5千克,那么每只大兔重量便是1.5千克。
答:每只大兔重1.5千克,每只小兔重0.5千克。
【第二篇:绳长】
有一根长为180厘米的绳子,从一端开始每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段。
答案与解析:1-180中,3的倍数有60个,4的倍数有45个,而既是3的倍数又是4的倍数的数一定是12的倍数,这样的数有180÷12=15个。注意到180厘米处无法标上记号,所以标记记号有:(60-1)+(45-1)-(15-1)=89,绳子被剪成90段。
【第三篇:学校去划船】
学校提高班的同学去划船,他们算了一下,如果增加一条船。正好每条船坐6人;如果减少一条船,正好每条船坐9人。问这个班共有多少同学?
答案与解析:先增加一条船,正好每条船坐6人,然后去掉两条船,就会余下12名同学,改为每船正好坐9人,即每条船增加3人正好把余下的12名同学全部安排上去,所以现在还有:
12÷3=4(条)船,而全班同学的人数为9×4=36(人)。
【第四篇:旅游】
试一试:甲、乙两张旅游团乘车参观,每辆车可乘35人,两团成员坐满若干辆车后,甲团余下的15人与乙团余下的成员正好又坐满一辆车。为了纪念这次参观,甲乙两团的每个成员都与不同团的每个人合拍一张照片留念。如果每个交卷可拍35张照片,那么拍完最后一张后,相机里的交卷还可拍几张照片?
答案与解析:设甲团坐满a辆车,乙团坐满b辆车,甲团人数为(35a+15)人,乙团人数为(35b+20)人,照相总数为(35a+15)(35b+20)张,又每卷可照35张,则(35a+15)(35b+20)\35=(35ab+20a+15b+8)......20.可知,拍完最后一张后,交卷还可以照35-20=15(张)
【第五篇:书法展览】
光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共多少幅?
答案与解析:由题意可知,24幅作品是一、二、三、四、六年级参展作品的总数;22幅作品是一、二、三、四、五年级参展作品的总数。24+22=46(幅),这是一个五、六年级和两个一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品。
(24+22-10)\2=18(幅)
答:其他年级参展的作品有18幅。
小学四年级奥数题及答案解析(三篇)
【 #小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。以下是 整理的《小学四年级奥数题及答案解析(三篇)》相关资料,希望帮助到您。
【篇一】小学四年级奥数题及答案解析
1、计算:1234+2341+3412+4123
1234+2341+3412+4123
=(1000+200+30+4)+(2000+300+40+1)+(3000+400+10+2)+(4000+100+20+3)
=(1000+2000+3000+4000)+(200+300+400+100)+(30+40+10+20)+(4+1+2+3)
=10000+1000+100+10
=11110 2、计算:123+234+345-456+567-678+789-890
123+234+345-456+567-678+789-890
=123+234+345+(567-456)+(789-678)-890
=123+234+345+111+111-890
=234+(123+567)-890
=234+690-890
=34+890-890
=34
【篇二】小学四年级奥数题及答案解析
在一起抢劫案中,法官对涉案的四名犯罪嫌疑人赵达人,钱多多、孙上相、李拐铁四人进行了审问。
赵说:“罪犯在他们三个当中”
钱说:“是孙干的。”
孙说:“在赵和李中间有一个人是罪犯。”
李说:“钱说的是事实。”
经多次查证,四人之中有两人说了假话,另外两个人说了真话,你能帮助找出真正的罪犯吗?
答案与解析:(假设法)
已知四句话中只有两句是真话,且不能一下子看出真假,那么我们可以假定某句话是真的来进行推理,并以此作为本题的突破口。
假设赵说的是真话,根据两个人说了真话,则钱、孙、李三人中还有一个说了真话。如果是钱说了真话,那么李说的也一定是真话,这样就变为三个人说了真话,这与题目给的。条件不符。因此钱说的不是真话,从而得到李说的也不是真话,孙说的是真话,于是在这种情况下,赵和孙说了真话,所以李是罪犯。
如果赵说的是假话,那么钱、孙、李都不是罪犯,这时只有赵是罪犯。但是这样就得到了赵、钱、李三个人都说了假话,这也与题意不符。因此这情况不可能出现。所以李是罪犯。
答:李铁拐是罪犯。
【篇三】小学四年级奥数题及答案解析
1、计算236×37×27
分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27
=236×(37×3×9)
=236×(111×9)
=236×999
=236×(1000-1)
=236000-236
=235764
2、计算333×334+999×222
分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222
=333×334+333×(3×222)
=333×(334+666)
=333×1000
=333000
小学四年级奥数题及解答(三篇)
【 #小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。以下是 整理的《小学四年级奥数题及解答(三篇)》相关资料,希望帮助到您。
【篇一】小学四年级奥数题及解答
已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。现在轮船从上游A港到下游B港。已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?
考点:流水行船问题.
分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米)。
因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米)。
现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时)。
木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:
6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米)。
解:顺水行速度为:48÷4=12(千米),
逆水行速度为:48÷6=8(千米),
水的速度为:(12-8)÷2=2(千米),
从A到B所用时间为:72÷12=6(小时),
6小时木板的路程为:6×2=12(千米),
与船所到达的B地距离还差:72-12=60(千米)。
答:船到B港时,木块离B港还有60米。
【篇二】小学四年级奥数题及解答
小明住在一条胡同里,一天,他算了算这条小胡同的门牌号码。他发现,除掉他自己
家的不算,其余各门牌号码之和正好是100。请问这条小胡同一共有____户(即有多少
个门牌号码)。小明家的门牌号码是_______。
【答案】
这道题目的具体数值只有一个,所以我们要通过估算的方法解决问题!我们都知道:
1+2+…+10=55,所以和在100附近的应该为1~14、或1~15,
(1)1+2+…+14=105,小明家门牌号为5,共有14户人家;
(2)1+2+…+14+15=120,小明家门牌号为20,不再1~15的范围,所以不符合题意。
【篇三】小学四年级奥数题及解答
1、某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个床位。该校有宿舍_____间,学生_____人。
解:(14+4)÷(7-5)=9(间)
9×5+14=59(人)。
2、用库存化肥给麦田施肥,如果每公亩施6千克,就缺200千克;如果每公亩施5千克,则剩下300千克,那么有_____公亩麦田,库存化肥_____千克。
解:(300+200)÷(6-5)=500(公亩);
500×5+300=2800(千克)。
3、用一根绳子测量井的深度,如果线绳两折时,多5米,;如果绳子3折时,差4米,绳子长_____米,井深_____米。
解:(5×2+4×3)÷(3-2)=22(米)
(22-4)×3=54(米)
4、小玲买5千克苹果,可多余1元8角钱;如果买6千克,还差1元2角。每千克苹果价钱是_____元,小玲带的钱是_____元。
解:(1.8+1.2)÷(6-5)=3(元)
3×5+1.8=16.8(元)
5、某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人。参加劳动的有_____人。
解:10÷(12-10)=5(组),5×10=50(人)
小学四年级奥数题及答案大全
【 #小学奥数# 导语】奥数能够快速有效、全面提高孩子智商的工具。奥数学习对开拓思路有着重要作用。以下是 整理的《小学四年级奥数题及答案大全》相关资料,希望帮助到您。
1.小学四年级奥数题及答案大全 篇一
1、棵梧桐树,共栽多少棵树?米栽1一条路长100米,从头到尾每隔101。路分成100÷10=10段,共栽树10+1=11棵。
2、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。
3、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。
4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5、在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆
2.小学四年级奥数题及答案大全 篇二
1、某种商品的价格是:每1个1分钱,每5个4分钱,每9个7分钱。小赵的钱最多恰好能买50个,小李的钱最多恰好能买500个,问小李的钱比小赵的钱多多少分?
答案:350分。
分析:当钱数一定,要想买的最多,就要采取最划算的策略:每9个7分钱,首先要考虑50和500中可以分成多少份9个。然后看它们各自的余数是不是5的倍数,如果是,就按每5个4分钱累计,如果还有余数,才考虑每1个1分钱。按此方法,可以把小李和小赵两人各有多少钱计算出来。
详解:因为50÷9=5……5,所以小赵有钱
5×7+4=39(分)。
又因为500÷9=55……5,所以小李有钱
55×7+4=389(分)。
因此小李的钱比小赵多
389-39=350(分)。
2、有3个不同的数字,排列3次,组成了3个三位数,这3个三位数相加之和为789,又知运算中没有进位,那么这3个数字连乘所得的积是多少?
答案:10或者12
解析:由题意,3个三位数的百位之和为7,十位数之和为8,个位数之和为9,而在每个三位数里,3个数字都各出现了一次。所以我们把百位之和、十位之和、个位之和再加在一起,就应该等于把三个数字各加了3次,也就等于3个数字之和的3倍。由于7+8+9=24,也即3个数字之和的3倍为24,从而3个数字之和为8。
又由题意,3个数字互不相同。而3个数字互不相同,其和又等于8,容易知道3个数字只能是1、2、5或者1、3、4。题目要求3个数字连乘的积,所以答案是1×2×5=10或者1×3×4=12
3.小学四年级奥数题及答案大全 篇三
1、19名战士要过一条河,只有一条小船,船上每次只能坐4名战士,至少要渡几次,才能使全体战士过河?
2、布袋里有两只红袜子和两只黑袜子,至少拿出几只,才能保证配成一双同样颜色的袜子?
3、布袋里有形状大小完全一样的篮球和黄球各4个,要保证一次拿出两种颜色不相同的球,至少必须摸出几个球?
4、跷跷板的两边各有四个铁球,这时跷跷板保持平衡。如果拿掉一个铁球,跷跷板上还有几个铁球?
5、一根电线,对折再对折,最后从中间剪开,剪开的电线一共有几段?
参考答案:
1、19-4=15(名)4-1=3(名)15÷3=5(次)5+1=6(次)
2、如果一次摸出2只恰好是不同颜色,再摸1只一定和其中1只颜色相同。所以一次至少要摸出3只才能保证配成一双颜色相同的袜子。
3、如果一次摸出的4个是同一种颜色的球,再摸一个一定是另一种颜色的球,所以一次至少摸出5个球才能保证得到两种颜色不同的球。
4、如果拿掉一个铁球,翘翘板上一个铁球也没有了。
4.小学四年级奥数题及答案大全 篇四
1、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
2、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40km,乙车每小时行45km,两地相距多少km?(交换乘客的时间略去不计)
参考答案:
1、解析:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答:每支铅笔0.2元。
2、解析:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
答:两地相距255km。
5.小学四年级奥数题及答案大全 篇五
1、一列火车3小时行240千米,照这样算,7小时行_________千米。
2、粮站加工切面,5天加工440千克,照这样算,30天可加工切面_________千克。加工4840千克切面要_________天。
参考答案:
1、解:240÷3×7=560(千米)。
答:7小时行560千米。
故答案为:560。
2、解:440÷5×30
=88×30
=2640(千克);
4840÷(440÷5)
=4840÷88
=55(天)。
故答案为:2640,55。
6.小学四年级奥数题及答案大全 篇六
1、某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个床位。该校有宿舍_____间,学生_____人。 解:(14+4)÷(7-5)=9(间) 9×5+14=59(人)。 2、用库存化肥给麦田施肥,如果每公亩施6千克,就缺200千克;如果每公亩施5千克,则剩下300千克,那么有_____公亩麦田,库存化肥_____千克。 解:(300+200)÷(6-5)=500(公亩); 500×5+300=2800(千克)。 3、某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人。参加劳动的有_____人。 解:10÷(12-10)=5(组),5×10=50(人)7.小学四年级奥数题及答案大全 篇七
1、(873×477-198)÷(476×874+199)
2、2000×1999-1999×1998+1998×1997-1997×1996+…+2×1
3、关于计算的奥数题:297+293+289+…+209
复杂计算题答案:
1、(873×477-198)÷(476×874+199)
解:873×477-198=476×874+199
因此原式=1
2、2000×1999-1999×1998+1998×1997-1997×1996+…+2×1
解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1
=(1999+1997+…+3+1)×2=2000000
3、297+293+289+…+209
8.小学四年级奥数题及答案大全 篇八
1、小明于今年十月一日在银行存了活期储蓄2500元,月利率为0.1425%。如果利息率为20%,那么,到明年十月一日,小明最多可以从银行取出多少钱?
解答:2500×0.1425%×12×(1-20%)+2500=2534.2
2、一种商品先按20%的利润率定价,然后按定价的90%出售,结果获利256元,这种商品的成本是多少?
解答:256÷=3200
3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?
答案与解析:
8%40%+x%(1-40%)=30.2%
X%=25%
(1+25%)(1+100%)=62.5%
9.小学四年级奥数题及答案大全 篇九
1、三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选?
解答:
在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。
说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。
因此,甲最少再得到4票就能够保证当选了。
2、商店有水彩笔和铅笔一共163支,如果水彩笔拿走19支后,水彩笔的支数就正好是铅笔的5倍.原有水彩笔和铅笔各多少支?
解答:原有水彩笔139支,铅笔24支。
分析:水彩笔拿走19支后,正好是铅笔数量的5倍.此时水彩笔和铅笔的总数也应减少19支,列式成163-19=144(支),且正好是铅笔支数的1+5=6倍。
铅笔有:144÷6=24(支),水彩笔有:24×5+19=139(支)。
10.小学四年级奥数题及答案大全 篇十
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌。"结果王老师只猜对了一个。那么小明得___牌,小华得___牌,小强得___牌。
逻辑推理答案:
逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答。这里以小明所得奖牌进行分析。
解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。
②若小明得银牌时,再以小华得奖情况分别讨论。如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意。
③若小明得铜牌时,仍以小华得奖情况分别讨论。如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。
综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。
更多文章:
《人生别气馁》日本最高龄女诗人 柴田丰?求一首日文原版的诗歌,柴田丰的《蟋蟀》的日文原版
2024年4月9日 13:40
全民健康生活方式(全民健康生活方式行动第二阶段提出的3-3健是指什么)
2024年5月8日 17:20
下面这张电力系统分析课程PPT中的几个公式,谁能帮解释一下其中的单位问题?分数除法怎样约分
2024年4月26日 09:10