什么是整数规划?割平面法求解整数规划
本文目录
什么是整数规划
整数规划是指规划中的变量(全部或部分)限制为整数,若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求某些变量的解必须是整数。例如,当变量代表的是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。不同于线性规划问题,整数和01规划问题至今尚未找到一般的多项式解法。
割平面法求解整数规划
割平面法求解整数规划如下:
割平面法主要用于求解整数规划问题的方法。1958年由美国格莫理提出。基本思路是:先不考虑整数性约束,求解相应的线性规划问题。若线性规划问题的最优解恰好是整数解,则此解即为整数规划问题的最优解。否则,就增加一个新的约束条件,称为割平面。
割平面必须具有两条性质:从线性规划问题的可行域中至少割掉的非整数最优解;不割掉任何整数可行域,然后在缩小的可行域上继续解线性规划问题。重复以上做法,经有限次切割后,必可在缩小的可行域的一个整数极点上达到整数规划问题的最优解。
割平面法是1958年由美国学者高莫利(R.E.GoMory)提出的求解全整数规划的一种比较简单的方法。其基本思想和分枝定界法大致相同,即先不考虑变量的取整约束,用单纯形法求解相应的线性规划。
如果所得的最优解为整数解,那么它也是原整数规划问题的最优解3如果最优解不是整数解,那么分枝定界法是任取一个取分数值的变量Xk=bk将原整数规划分成两枝。
其实质是用两个垂直于坐标轴的平行平面Xk=+1将原可行域R分成两个可行域R1和R2,并将两个平行平面之间的不含有整数解的那一部分可行域去掉,以缩小可行域。
切割平面法由RalphGomory在20世纪50年代提出,用于解决整数规划和混合整数规划问题。然而,当时的大多数专家,包括Gomory自己都认为由于数值上的不稳定性,这种方法没有实际运用价值;同时由于求解过程中需要进行过多轮的切割,该方法可能是无效的。
整数规划为什么难
可行域是离散的。可行域变成了离散的点,使得整数规划问题比线性规划问题要更难求解,因此难。整数规划是指规划中的变量限制为整数,若在线性模型中,变量限制为整数,则称为整数线性规划。
整数规划的求解方法有哪些
1. 分支定界法分支定界法是一种数学规划或搜索算法,它通过将问题分解成一系列子问题,并在每个子问题上采用线性规划来寻找最优解。算法将问题树状地分解,每次选择一个整数变量进行分支,然后使用线性规划解决剩余的问题。如果得到的最优解不是整数,则问题被分成两个子问题,分别以该变量小于等于最优解整数部分和大于等于最优解整数部分的两个目标函数值作为界限。依此类推,直到找到所有整数变量的整数最优解,或者发现问题无解。
2. 剪枝法剪枝法是分支定界法的改进,它通过适当的剪枝策略减少子问题的数量,从而有效减少计算时间。具体来说,当当前节点的下界比全局最优解的上界小或等于某个已经找到的整数解的目标函数值时,可以直接删去该节点及其所有子节点,并调到下一个节点进行计算。这种方法能够有效地削减搜索树的
3. 混合整数线性规划算法
混合整数线性规划算法是一种计算机科学算法,它将整数规划转化为混合整数线性规划,并使用现代优化技术来解决这种问题。该算法通常包括两个步骤:首先使用线性规划解决原问题,然后将线性规划的解向最近的整数值舍入来获得整数解。这种方法相对于传统的分支定界法和剪枝法更加高效,但需要使用计算机程序来实现求解。
整数规划的介绍
规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。
“整数规划“是什么意思
整数规划整数规划integer programming一类要求问题中的全部或一部分变量为整数的数学规划。一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。
什么是整数规划并写出其数学模型
整数规划是指一类要求问题中的全部或一部分变量为整数的数学规划。是近三十年来发展起来的、规划论的一个分支. 整数规划问题是要求决策变量取整数值的线性规划或非线性规划问题。
一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。
整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。
0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。
整数规划与组合最优化的关系
整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。
整数规划的种类
整数规划又分为:
1、纯整数规划:所有决策变量均要求为整数的整数规划
2、混合整数规划:部分决策变量均要求为整数的整数规划
3、纯0-1整数规划:所有决策变量均要求为0-1的整数规划
4、混合0-1规划:部分决策变量均要求为0-1的整数规划
整数规划与线性规划不同这处只在于增加了整数约束。不考虑整数约束所得到的线性规划称为整数规划的线性松弛模型。
整数规划模型
在现实生活中,决策变量代表产品的件数、个数、台数、箱数、艘数、辆数等等,则变量就只能取整数值. 如截料模型实际上就是一个整数规划模型,该例的决策变量代表所截钢管的根数,显然只能取整数值。因而整数规划模型也有着广泛的应用领域,从 以下的几个例子中更可以窥其一斑。
求解整数规划的一种自然的想法是,能否用整数规划的线性松弛模型的最优解经过四舍五入得到整数规划的最优解呢?回答是否定的,因为这样四舍五入的结果甚至不是可行解。
整数规划比通常的线性规划更加难以求解,迄今求解整数规划其基本求解思路都是按一定的搜索规则,在整数规划的线性松弛模型的可行域内寻找出整数最优解(或确认无整数最优解),因此求整数规划的解需要更多的时间,现通用的解法,主要有分支定界法、割平面法和穷举法等。
整数规划求解方法
分枝定界法,割平面法。1、分枝定界法:是一种搜索算法,通过不断地将问题分成子问题,子问题进行求解,最终得到原问题的整数解,分枝定界法用于求解纯整数规划问题。2、割平面法:是一种线性规划算法,通过不断地添加割平面来缩小可行域,最终得到原问题的整数解,割平面法用于求解混合整数规划问题。
整数规划问题的分类
【答案】:整数规划分为整数线性规划和整数非线性规划规划两类。又按对变量的不同要求,还可将整数规划分为下述几种类型:1)若要求全部变量都取整数值,则称为纯整数规划或全整数规划2)若只要求一部分变量取整数值,则称为混合整数规划3)若要求全部或部分变量只取0或1值,则称为0-1规划
更多文章:
四个小朋友玩跷跷板(四个小孩玩跷跷板当一边做上ab另一边上cd两边重量相等当b和d互换位置后ad=bc)
2024年5月3日 11:40
贵阳智慧停车停车管理员上班时间?停车场车辆跟杆,管理员怎么处理
2024年5月19日 04:30
防近视小报手抄报大全(抗疫情防近视的手抄报 预防近视的手抄报)
2024年4月29日 00:10
少小离家老大回全诗(少小离家老大回,乡音无改鬓毛催.出自哪里作者是谁)
2024年3月30日 18:50