几何图形公式(所有图形的公式)
本文目录
- 所有图形的公式
- 所有几何图形的面积,周长,体积,表面积的公式分别是什么
- 所有几何图形的表面积公式是什么
- 高中几何有哪些公式
- 所有图形几何公式
- 几何图形公式小学
- 小学几何计算公式有哪些
- 立体几何所有公式
- 几何图形面积计算公式有哪些
- 跪求几何的所有图形公式及定理
所有图形的公式
一、平面图形公式:
1、正方形 S=a² 或对角线×对角线÷2 C=4a
2、平行四边形 S=ah
3、三角形 S=ah÷2
4、梯形 S=(a+b)×h÷2
5、圆形 S=πr2 C=πd
6、椭圆 S=πr
7、扇形 S=LR/2
二、立体图形公式:
1、长方体的表面积=2×(长×宽+长×高+宽×高) 用符号表示是:S=2(ab+bc+ca)
2、长方体的体积 =长×宽×高 用符号表示是:V=abh 或底面积×高 用符号表示是:V=Sh
3、正方体的表面积=棱长×棱长×6 用符号表示是:S=a²×6
4、正方体的体积=棱长×棱长×棱长 用符号表示是:V=a³
5、圆柱的侧面积=底面周长×高 用符号表示是:S侧=πd×h
6、圆柱的表面积=2×底面积+侧面积 用符号表示是:S=πr²×2+dπh
7、圆柱的体积=底面积×高 用符号表示是:V=πr²×h
8、圆锥的体积=底面积×高÷3 用符号表示是:V=πr²×h÷3
9、圆锥侧面积=1/2*母线长*底面周长
10、圆台体积=h÷3
11、球体体积=(1/3*S*h)*(4*pi*R²)/S=4/3*pi*R²
三、立体几何图形:
1、柱体:包括圆柱和棱柱。棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;
2、锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及N棱锥;棱锥体积为V=SH/3 ;
3、旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。其表面积公式为:S=2πRL,体积公式为:V=2πRS(其中L是基图的周长,S是基图的面积,R是重心到轴的距离)
4、截面体:包括棱台、圆台、斜截圆柱、斜截棱柱、斜截圆锥、球冠、球缺等。其表面积和体积一般都是根据图形加减解答。
扩展资料:
1、平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。
2、立体图形(solid figure)是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个长方体,正方体等的规则立体图形最多看到立体图形实物的三个面。
3、几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的。几何源于西文西方的测地术,解决点线面体之间的关系。无穷尽的丰富变化使几何图案本身拥有无穷魅力。
参考资料来源:
百度百科-平面图形
百度百科-立体图形
百度百科-几何图形
所有几何图形的面积,周长,体积,表面积的公式分别是什么
高中数学合集百度网盘下载
***隐藏网址***
***隐藏网址***
?pwd=1234提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
所有几何图形的表面积公式是什么
所有表面积公式所有表面积公式我来答有奖励共18条回答Midsummer5LV.12019-05-24常见几何图形和几何体的表面积公式如下:1、长方形的周长=(长+宽)×2 C=(a+b)×2。2、正方形的周长=边长×4 C=4a。3、长方形的面积=长×宽 S=ab。4、正方形的面积=边长×边长 S=a^2。5、三角形的面积=底×高÷2 S=ah÷2。6、平行四边形的面积=底×高 S=ah。7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2。8、圆的面积=圆周率×半径×半径=πr^2。9、长方体的表面积=(长×宽+长×高+宽×高)×2。11、正方体的表面积=棱长×棱长×6=6a^2。12、圆柱的侧面积=底面圆的周长×高=2πrh。13、圆柱的表面积=上下底面面积+侧面积。S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch。参考资料来源:百度百科-表面积全文127349百度文库精选让每个人平等地提升自我2020-03-10正方体表面积公式:S=6×(棱长×棱长)字母:S=6a²长方体表面积公式:S=(长×宽+长×高+宽×高)×2或:S=长×宽×2+长×高×2+宽×高×2字母:S=2(ab+ah+bh)或:S=2ab+2ah+2bh正方体V:体积a:棱长体积=棱长×棱长×棱长V=a×a×a长方体V:体积a:长b:宽h:高体积=长×宽×高V=abh圆柱体体积底面积*高 V=3.14*R^2*H圆柱体面积公式下面一个圆的周长*高S=3.14*2R*H圆的周长公式C=2πr圆的面积公式S=πr²(π=3.14;r为圆的半径;)7、甲、乙两人生产一批零件,甲、乙工作效率的比是2:1,两人共同生产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?解:将乙的工作效率看作单位1那么甲的工作效率为2乙2天完成1×2=2乙一共生产1×(3+2)=5甲一共生产2×3=6所以乙的工作效率=14/(6-5)=14个/天甲的工作效率=14×2=28个/天一共有零件28×3+14×5=154个或者设甲乙的工作效率分别为2a个/天,a个/天2a×3-(3+2)a=146a-5a=14a=14一共有零件28×3+14×5=154个8、一个工程项目,乙单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?解:甲乙的工作效率和=1/20甲乙的工作时间比=1:2那么甲乙的工作效率比=2:1所以甲全文77毛虫flzxLV.42020-05-05体积是指物质或物体所占空间的大小,占据一特定容积的物质的量(表示三维立体图形大小)。面积是指物体所占的平面图形的大小。表面积是指所有立体图形外面的面积之和。拓展资料常用体积公式:长方体:(长方体体积=长×宽×高)正方体:(正方体体积=棱长×棱长×棱长)圆柱(正圆):【圆柱(正圆)体积=圆周率×(底半径×底半径)×高】圆锥(正圆):【圆锥(正圆)体积=圆周率×底半径×底半径×高/3】角锥:【角锥体积=底面积×高/3】球体:【球体体积=4/3(圆周率×半径的三次方)】棱台:注:V:体积;S1:上表面积;S2:下表面积;H:高。常用面积公式:长方形(矩形):{长方形面积=长×宽}正方形:{正方形面积=边长×边长}平行四边形:{平行四边形面积=底×高}三角形e799bee5baa6e997aee7ad94e78988e69d8331333365653766:{三角形面积=底×高÷2}梯形:{梯形面积=(上底+下底)×高÷2}圆形(正圆):{圆形(正圆)面积=圆周率×半径×半径}圆环:{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)}扇形:{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}常用表面积公式:长方体表面积:{长方体表面积=(长×宽+长×高+宽×高)×2}正方体表面积:{正方体表面积=棱长×棱长×6}球体(正球)表面积:{球体(正球)表面积=圆周率×半径×半径×4}椭圆(其中π(圆周率,a,b分别是椭圆的长半轴,短半轴的长).半圆:(半圆形的面积公式=圆周率×半径的平方÷2)全文20抢首赞大帅锅982LV.102019-12-21常见几何图形和几何体的表面积公式如下:1、长方形的周长=(长+宽)×2 C=(a+b)×2。2、正方形的周长=边长×4 C=4a。3、长方形的面积=长×宽 S=ab。4、正方形的面积=边长×边长 S=a^2。5、三角形的面积=底×高÷2 S=ah÷2。6、平行四边形的面积=底×高 S=ah。7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2。8、圆的面积=圆周率×半径×半径=πr^2。9、长方体的表面积=(长×宽+长×高+宽×高)×2。11、正方体的表面积=棱长×棱长×6=6a^2。12、圆柱的侧面积=底面圆的周长×高=2πrh。13、圆柱的表面积=上下底面面积+侧面积。S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch。全文473YY悠然自得ffLV.12020-05-03常见几何图形和几何体的表面积公式如下:1、长方形的周长=(长+宽)×2 C=(a+b)×2。2、正方形的周长=边长×4 C=4a。3、长方形的面积=长×宽 S=ab。4、正方形的面积=边长×边长 S=a^2。5、三角形的面积=底×高÷2 S=a
高中几何有哪些公式
高中立体几何包括立方体、正方体、直方体、圆柱体、圆锥体、球体、圆环体,他们的面积体积公式如下:
1、立方体:
体积公式:V = a³,其中a为边长。表面积公式:S = 6a²,其中a为边长。
立方体的体积等于边长的立方,表面积等于每个面的面积之和。
2、正方体:
体积公式:V = a³/2,其中a为边长。表面积公式:S = 6a²,其中a为边长。
正方体的体积是边长的立方的一半,表面积与立方体相同。
3、直方体:
体积公式:V = abc,其中a、b、c分别为长、宽和高。表面积公式:S = 2(ab + ac + bc),其中a、b、c分别为长、宽和高。
直方体的体积等于长、宽和高的乘积,表面积等于每个面的面积之和。
4、圆柱体:
体积公式:V = πr²h,其中r为底面半径,h为高度。表面积公式:S = 2πr² + 2πrh,其中r为底面半径,h为高度。
圆柱体的体积等于底面积乘以高度,表面积由底面和侧面的面积之和组成。
5、圆锥体:
体积公式:V = 1/3πr²h,其中r为底面半径,h为高度。表面积公式:S = πr² + πr√(r² + h²),其中r为底面半径,h为高度。
圆锥体的体积等于底面积乘以高度的1/3,表面积由底面和侧面的面积之和组成。
6、球体:
体积公式:V = 4/3πr³,其中r为半径。表面积公式:S = 4πr²,其中r为半径。
球体的体积等于半径的立方乘以4/3π,表面积等于球面的面积。
7、圆环体(环状柱体):
体积公式:V = πh(R² - r²),其中R为外半径,r为内半径,h为高度。表面积公式:S = 2πh(R + r) + 2π(R² - r²),其中R为外半径,r为内半径,
其中,a、b、c、h、r、R分别表示立方体边长、长方体三个边长、圆柱体高度、圆锥体高度、球体半径、圆环体高度和内外半径。π为圆周率。
所有图形几何公式
一、 正方形:1. 正方形的周长=边长×42. 正方形的面积=边长×边长 二、 长方形:1.长方形的周长=(长+宽)×22.长方形的面积=长×宽 三、平行四边形:1.平行四边形的面积 =底×高 四、三角形:.三角形的面积=底×高÷2 五、梯形梯形的面积=(上底+下底)×高÷2 六、圆形:1.圆的面积=圆周率×半径的平方2.圆的周长=圆周率×直径 七、长方体:1.长方体的体积=长×宽×高2.长方体的表面积=(长×宽)+(长×宽)+(宽×高)×2 八、正方体:1.正方体的体积=棱长×棱长×棱长2.正方体的表面积=棱长×6 九、圆柱、圆锥:1.圆柱的体积=底面积×高,圆锥的体积为=1/3×底面积×高2.圆柱的表面积=两个底面积+一个侧面积3.圆柱的侧面积=底面周长×高
几何图形公式小学
几何图形公式大全小学
几何图形公式大全小学,数学是一门我们从小酒开始学的主学课程,学好数学也能对我们的生活中有帮助,因为可以套用很多的公式解决问题,下面是几何图形公式大全小学。
几何图形公式小学1
1、正方形
正方形的周长=边长×4公式:C=4a
正方形的面积=边长×边长公式:S=a×a
正方体的体积=边长×边长×边长公式:V=a×a×a
2、长方形
长方形的周长=(长+宽)×2公式:C=(a+b)×2
长方形的面积=长×宽公式:S=a×b
长方体的体积=长×宽×高公式:V=a×b×h
3、三角形
三角形的面积=底×高÷2公式:S=a×h÷2
4、平行四边形
平行四边形的面积=底×高公式:S=a×h
5、梯形
梯形的面积=(上底+下底)×高÷2公式:S=(a+b)h÷2
6、圆
直径=半径×2公式:d=2r
半径=直径÷2公式:r=d÷2
圆的周长=圆周率×直径公式:c=πd=2πr
圆的面积=半径×半径×π公式:S=πrr
7、圆柱
圆柱的侧面积=底面的周长×高公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积公式:S=ch+2s=ch+2πr2
圆柱的总体积=底面积×高公式:V=Sh
8、圆锥
圆锥的总体积=底面积×高×1/3公式:V=1/3Sh
9、三角形内角和=180度
几何图形公式小学2
(一)图形的认识、测量
量的计量
一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。
二、长度单位:
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1米=100厘米
1米=1000毫米
三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。
六、面积单位:(100)
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)
1立方米=1000立方分米
1立方分米=1000立方厘米
1升=1000毫升
平面图形【认识、周长、面积】
一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。
三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
七、三角形的内角和等于180度。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。
十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。
十三、围成一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或围成的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导:
【1】平行四边形面积公式的推导过程
打开今日头条,查看更多精彩图片
①把平行四边形通过剪切、平移可以转化成一个长方形。
②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。
【2】三角形面积公式的推导过程
①用两个完全一样的三角形可以拼成一个平行四边形。
②平行四边形的底等于三角形的底,平行四边形的高等于三角形的’高,三角形面积等于和它等底等高的平行四边形面积的一半
③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。
【3】梯形面积公式的推导过程
①用两个完全一样的梯形可以拼成一个平行四边形
②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半
③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。
【4】画图说明圆面积公式的推导过程
①把圆分成若干等份,剪开后,拼成了一个近似的长方形。
②长方形的长相当于圆周长的一半,宽相当于圆的半径。
③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2
十六、平面图形的周长和面积计算公式:
长方形周长 =(长+宽)× 2
长方形面积 = 长 × 宽
正方形周长 = 边长 × 4
正方形面积 = 边长 × 边长
平行四边形面积 = 底 × 高
三角形面积 = 底 × 高 ÷ 2
几何图形公式小学3
立体图形【认识、周长、面积】
一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:
①等底等高: 体积1∶3
②等底等体积:高1∶3
③等高等体积:底面积1∶3
七、等底等高的圆柱和圆锥:
①圆锥体积是圆柱的1/3,
②圆柱体积是圆锥的3倍,
③圆锥体积比圆柱少2/3,
④圆柱体积比圆锥多2倍。
八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。
九、立体图形公式推导:
【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)
①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。
④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?
①把圆柱分成若干等份,切开后拼成了一个近似的长方体。
②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程?
①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。
十、立体图形的棱长总和、表面积、体积计算公式:
名称
计算公式
长方体棱长总和
长方体棱长总和 = (长+宽+高)× 4
长方体表面积
长方体表面积=(长×宽+长×高+宽×高)×2
长方体体积
长方体体积=长×宽×高
正方体棱长总和
正方体棱长总和=棱长×12
正方体表面积
正方体表面积=棱长×棱长×6
正方体体积
正方体体积=棱长×棱长×棱长
圆柱体侧面积
圆柱体侧面积=底面周长×高
圆柱体表面积
圆柱体表面积=侧面积+底面积×2
圆柱体体积
圆柱体体积=底面积×高
圆锥体体积
圆锥体体积=
(二)图形与变换
一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。
二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。
三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
(三)图形与位置
一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。
二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。
小学几何计算公式有哪些
一.用字母表示运算定律或性质加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac二.几何图形计算公式(1)周长:即围绕物体一周的长度。①长方形周长=(长+宽)×2 C=(a+b)×2 ②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小①长方形的面积=长×宽 S=ab ②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah ④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2 ⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】 平面图形的面积公式是以长方形面积计算公式为基础的。如两个完全相同的三角形、梯形可拼成一个平行四边形。圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积①长方体的体积=长×宽×高 V=abh ②正方体的体积=棱长×棱长×棱长 V=a×a×a=a3③圆柱的体积=底面积×高V=sh=πr2h ④圆锥的体积=底面积×高÷3 V=1/3sh= 1/3πr2h【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。等体积等底的长、正、圆柱体和圆锥体,圆锥高是长方体、正方体、圆柱体高的3倍。三.数量关系式1每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2 单价×数量=总价 总价÷单价=数量 总价÷数量=单价3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度4 工效×工时=工作总量 工作总量÷工效=工时 工作总量÷工时=工效5、 加数+加数=和 和-一个加数=另一个加数6、 被减数-减数=差 被减数-差=减数 差+减数=被减数7、 因数×因数=积 积÷一个因数=另一个因数8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 被除数=除数×商+余数注意:0.3÷0.2=1 。。。0.1 除数与被除数同时扩大100倍,商不变,余数也扩大100倍。9 平均数=总数÷总份数 平均速度=总路程÷总时间10.相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间 一个人的速度=相遇路程÷相遇时间-另一个人的速度11.平均速度问题 平均速度=总路程÷(顺流时间+逆流时间)注意: 折(往)返=路程×212.浓度问题: 溶质(药)+溶剂(水)=溶液(药水) 溶质(药)÷溶液(药水)=浓度溶液(药水)×浓度=溶质(药) 溶质(药)÷浓度=溶液(药水)13.折扣问题: 折扣=现价÷原价 (折扣<1) 现价=原价×折扣 原价=现价÷折扣利息=本金×年利率×时间(年) =本金×月利率×时间(月)14比例尺=图上距离÷实际距离 实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺税后利息=本金×利率×时间×(1-5%)15追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差速度差=追及距离÷追及时间易错题:1、周长和面积不相等。 2、圆的面积与半径不成比例。 3、增加和扩大、缩小与减少的区别 4、地砖块数与面积的计算。 5、时间的进率60,平方米与公顷的进率是10000 6、一种立体图形转化为另一种立体图形,体积不变。 7、填空、应用题要注意单位的统一(易错);要求保留时,无要求用什么法,要结合实际用“四舍五入”还是“进一法”。 8、计算表面积时结合实际求哪些面。 9、 车轮、压路机前进的距离就是周长×转数。 10、数的改写用小数点表示,再添单位;精确到(保留时)看下一位并用“四舍五入”法表示,再添单位。 11、等底等高的三角形是平行四边形面积的一半;等底等高的圆柱体积是圆锥的3倍。 12、路程一定,速度和时间成反比。如A、B同走一段路时间比是5:4,A、B的速度比是4:5。(工作总量类似)。 13、看到高和垂线想到直角(符号)。 14、两点之间直线最短,点线之间垂线段最短;绕一点旋转就是以这点为顶点,作与这个点相关的两条边的垂线,定出另两个点。旋转时逆时针是向左。 15、确定方向要注意观测点。 16、计算时要留意跟整数相差一点的数.如9.9 ;10.1。 17、应用题分析时注意抓共同量或不变量分析。如实际与计划中的总量,男生转入人数时的女生人数;同一面积中换不同边长的地砖。 18、两个圆的面积比是半径比的平方倍;图形面积扩大的倍数是边长扩大的平方倍,。周长公式 类型公式字母表示 长方形(长+宽)*2 (a+b)×2 正方形边长×4 a×4 圆直径×π 或 2×π×半径π×d 或 2×π×r 面积公式 类型公式字母表示 长方形长×宽 a×b 正方形边长×边长 a×a 平行四边形底×高 a×h 梯形(上底+下底)×高÷2 (a+b)×h÷2 三角形底×高÷2 a×h÷2 长方体表面积(长×宽+长×高+宽×高)×2 (a×b+a×h+b×h)×2 正方体表面积棱长×棱长×6 a×a×6 圆面积π×半径的平方 r2 圆柱体侧面积底面周长×高 π×直径×高 2×π×半径×高 c×h π×d×h 2×π×r×h 圆柱体表面积侧面积+2×底面积 底面周长×高+2×π×半径的平方 π×直径×高+2×π×半径的平方 2×π×半径×高+2×π×半径的平方 c×h+2×r2 π×d×h+2×r2 2×π×r×h +2×r2 体积公式 类型公式字母表示 长方形长×宽×高 a×b×h 正方体棱长×棱长×棱长 a×a×a 圆柱体底面积×高 π×半径的平方×高 s×h r2×h
立体几何所有公式
立体几何所有公式如下:
1、平面图形(名称符号周长C和面积S)
正方形边长a,C=4a,S=a2
长方形边长a和b,C=2(a+b),S=ab
三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,其中s=(a+b+c)/2,S=ah/2=ab/2·sinC=1/2=a2sinBsinC/(2sinA)
四边形边长d,对角线长D,对角线夹角a,S=dD/2·sinα
平行四边形边长a,b,a边的高h,两边夹角α,S=ah=absinα
菱形边长a,夹角α,长对角线长D,短对角线长d,S=Dd/2=a2sinα
梯形上、下底长a和b,高h,中位线长m,S=(a+b)h/2=mh
圆半径r,直径d,C=πd=2πrS=πr2=πd2/4
扇形半径r,圆心角度数a,C=2r+2πr×(a/360),S=πr2×(a/360)
弓形弧长l,弦长b,矢高h,半径r,圆心角的度数α,S=r2/2·(πα/180-sinα)=r2arccos1/2=r(l-b)/2+bh/2≈2bh/3
圆环外圆半径R,内圆半径r,外圆直径D,内圆直径d,S=π(R2-r2)=π(D2-d2)/4
椭圆长轴D,短轴d,S=πDd/4
2、立方图形(名称符号面积S和体积V)
正方体边长a,S=6a2,V=a3
长方体长a,宽b,高c,S=2(ab+ac+bc,V=abc
棱柱底面积S,高h,V=Sh
棱锥底面积S,高h,V=Sh/3
棱台上、下底面积S1和S2,高h,V=h/3
拟柱体上底面积S1,下底面积S2,中截面积S0,高h,V=h(S1+S2+4S0)/6
圆柱底半径r,高h,底面周长C,底面积S底,侧面积S侧,表面积S表,C=2πr,S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
空心圆柱外圆半径R,内圆半径r,高h,V=πh(R2-r2)
直圆锥底半径r,高h,V=πr2h/3
圆台上底半径r,下底半径R,高h,V=πh(R2+Rr+r2)/3
球半径r,直径d,V=4/3πr3=πd2/6
球缺球缺高h,球半径r,球缺底半径a,V=πh(3a2+h3)/6=πh3(3r-h)/3a2=h(2r-h)
球台球台上、下底半径r1和r2,高h,V=πh/6
圆环体环体半径R,环体直径D,环体截面半径r,环体截面直径d,V=2π2Rr2=π2Dd2/4
桶状体桶腹直径D,桶底直径d,桶高h,V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心),V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
立体几何的意义及八大定理
数学上,立体几何是三维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。高中阶段常研究空间几何体、空间向量和立体几何等问题和相关内容。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,瓶盖等等。
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
立体几何的定理:直线与平面平行的判定定理,如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。
直线与平面平行的性质定理,如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
平面与平面平行的判定定理,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
平面与平面平行的性质定理,如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
直线与平面垂直的判定定理,如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理,若两条直线垂直于同一个平面,则这两条直线平行。
平面与平面垂直的判定定理,如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
平面与平面垂直的性质定理,如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面。
几何图形面积计算公式有哪些
1、长方形的周长=(长+宽)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a×a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a×a×a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh
扩展资料
几何图形面积8个速背口诀:
1、三角形的中线把三角形分成两个面积相等的部分。
2、同底同高或等底等高的两个三角形面积相等。
3、平行四边形的对角线把其分成两个面积相等的部分。
4、同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5、三角形的面积等于等底等高的平行四边形的面积的一半。
6、三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4
7、三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4
8、有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。
跪求几何的所有图形公式及定理
小学类:三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 单位换算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 (4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤 (5)1公顷=10000平方米 1亩=666.666平方米 (6)1升=1立方分米=1000毫升 1毫升=1立方厘米 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
更多文章:
羽毛球竞赛规则(羽毛球竞赛规则(规定比赛规则和裁判员的职责))
2024年4月28日 09:10
什么是深度访谈它的工作流程是什么?深度访谈法适用于动机与敏感性问题数据采集吗
2024年8月28日 15:50
09年高考作文题目(09今年高考各个省语文的作文题目各是什么)
2024年9月26日 08:50
学校工会工作计划(2022学校工会年度工作计划范文精选四篇)
2024年8月16日 05:30
手机拍照全家福比例多少最好看?全家福照片最大彩扩的尺寸是多少
2024年4月22日 16:30