数学中抽屉原理是什么?抽屉原理怎么去理解
本文目录
- 数学中抽屉原理是什么
- 抽屉原理怎么去理解
- 抽屉原理的内容是什么
- 抽屉原理的至少数为什么是2,不是1呢,明明有一个抽屉至少数是1啊
- 小学数学中的抽屉原理是怎么回事
- 第二抽屉原理怎么理解
- 抽屉原理的公式【详细点
- 抽屉原理是什么意思
- 什么是抽屉原理
数学中抽屉原理是什么
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件。抽屉原理2:将多于mxn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件。抽屉原理的本质是最差原则,很多题目不能直接用抽屉原理来解答的,均可以通过最差原则来求解。
抽屉原理怎么去理解
若每个抽屉至多放进m个物体,无论怎样放桌上有十个苹果,要把这十个苹果放到九个抽屉里,那么物体的总数至多是n,与题设矛盾,则至少有一个抽屉里有不少于m+1的物体:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,则总共至少有mn个物体。第一抽屉原理原理1,假如有n+1或多于n+1个元素放到n个集合中去,其中必有一个抽屉中至多有(m—1)个物体。证明(反证法):若每个抽屉都有不少于m个物体。第二抽屉原理把(mn-1)个物体放入n个抽屉中。原理2:把多于mn+1(m乘以n)个的物体放到n个抽屉里。证明(反证法),故不可能。原理3、2、3都是第一抽屉原理的表述,则至少有一个抽屉里有无穷个物体。原理1,其中必定至少有一个集合里有两个元素:把无穷多件物体放入n个抽屉,与题设不符,那么n个抽屉至多放进mn个物体。”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,而不是题设的n+k(k≥1),故不可能,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素
抽屉原理的内容是什么
三个公式:
1、把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
2、把多于mn+1个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
3、把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是所说的“抽屉原理”。
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
抽屉原理
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
抽屉原理的至少数为什么是2,不是1呢,明明有一个抽屉至少数是1啊
3个苹果放在2个抽屉。有(0,3)(1,2)(2,1)(3,0)四种放发,每一种放法都有一个抽屉放至少2个苹果。所以必定有一个抽屉里至少放两个苹果,这句话就概括此题的4种(所有)可能性。是一定存在的。理解抽屉原理要注意的几点1、抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。2、“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。3、抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。4、将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。望补充或采纳!
小学数学中的抽屉原理是怎么回事
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=+1个物体:当n不能被m整除时.②k=nm个物体:当n能被m整除时.理解知识点:表示不超过X的最大整数.例:=2;关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.【命题方向】经典题型:例1:在任意的37个人中,至少有( )人属于同一种属相.A、3 B、4 C、6分析:把12个属相看做12个抽屉,37人看做37个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答解:37÷12=3…13+1=4(人)答:至少有4人的属相相同.故选:B点评:此题考查了利用抽屉原理解决实际问题的灵活应用,关键是从最差情况考虑例2:在一个不透明的箱子里放了大小相同的红、黄、蓝三种颜色的玻璃珠各5粒.要保证每次摸出的玻璃珠中一定有3粒是同颜色的,则每次至少要摸( )粒玻璃珠.A、3 B、5 C、7 D、无法确定分析:把红、黄、蓝三种颜色看做3个抽屉,考虑最差情况:每种颜色都摸出2粒,则一共摸出2×3=6粒玻璃珠,此时再任意摸出一粒,必定能出现3粒玻璃珠颜色相同,据此即可解答解:根据题干分析可得:2×3+1=7(粒),答:至少摸出7粒玻璃珠,可以保证取到3粒颜色相同的玻璃珠.故选:C点评:此题考查了利用抽屉原理解决实际问题的灵活应用.(参考来源:jyeoo)
第二抽屉原理怎么理解
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。 原理2:把m个元素任意放入n,且n<m,则一定有一个集合呈至少要有k个元素。 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
抽屉原理的公式【详细点
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
扩展资料
在任意的五个自然数中,是否其中必有三个数的和是3的倍数。
分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。
第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。
第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。
综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。
抽屉原理是什么意思
抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
扩展资料:
运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。
因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。
什么是抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
第一抽屉原理:
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
扩展资料:
一般表述:
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。
在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
用高斯函数来叙述一般形式的抽屉原理的是:将m个元素放入n个抽屉,则在其中一个抽屉里至少会有
+1个元素。
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。
根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。
如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。
不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
表现形式:
把它推广到一般情形有以下几种表现形式。
形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
证明:(反证法)假设结论不成立,即对每一个ai都有ai《2,则因为ai是整数,应有ai≤1,于是有:
a1+a2+…+an≤1+1+…+1=n《n+1,这与题设矛盾。
所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。
形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。
证明:(反证法)假设结论不成立,即对每一个ai都有ai《m+1,则因为ai是整数,应有ai≤m,于是有:
a1+a2+…+an≤m+m+…+m=nm《nm+1,这与题设相矛盾。
所以,至少有存在一个ai≥m+1
知识扩展——高斯函数+1
形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于。
证明:(用反证法)假设结论不成立,即对每一个ai都有ai《,于是有:
a1+a2+…+ak《≤k?(n/k)=n
k个
形式四:设把q1+q2+…+qn-n+1个元素分
为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。
证明:(用反证法)假设结论不成立,即对每一个ai都有ai《qi,因为ai为整数,应有ai≤qi-1,
于是有:a1+a2+…+an≤q1+q2+…+qn-n 《q1+q2+…+qn-n+1这与题设矛盾。
所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi
形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。(借由康托的无穷基数可将鸽巢原理推广到无穷集中。)
参考资料:
百度百科-抽屉原理
更多文章:
七夕送女朋友什么礼物好最有意义(七夕送女朋友什么礼物比较有意义)
2024年4月11日 14:20
我们相遇在网络(有首歌 歌词是 我们相遇在 网络 什么连接鼠标的情谊)
2024年7月30日 17:40