行程问题应用题(小学行程问题应用题)
本文目录
- 小学行程问题应用题
- 小学五年级奥数行程问题应用题及答案
- 基础的行程问题奥数应用题
- 小学六年级奥数行程问题应用题及答案
- 小学奥数行程问题应用题五篇
- 行程问题应用题(有答案)
- 有关行程问题的应用题和答案
- 关于行程问题的小学奥数应用题
- 小学行程问题的应用题
- 小学生奥数行程问题应用题
小学行程问题应用题
小学行程问题应用题
小学数学的行程应用题是非常重要的一个学习重点,在试卷的占比分十分多,需要我们细心的去对待。下面是我整理的小学行程问题应用题,欢迎阅读参考!
小学行程问题应用题 (一)
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的’速度?
4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?
5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?
6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?
7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地?
8、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?
9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?
10、 客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站间的路程是多少千米?
11、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?
12、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?
13、两地的距离是1120千米,有两列火车同时相向开出。第一列火车每小时行60千米,第二列火车每小时行48千米。在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?
14、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?
15、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度?
16、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?
17、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A、B之间不停地往返奔跑。如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?
小学行程问题应用题 (二)
准备题:
1、 小明和小红家相距600米,两人同时从家出发,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?
2、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?
3、两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?
用4辆载重量相同的汽车,7次共运货物168吨,现有同样的汽车8辆,10次可以运货物多少吨?
知识整理:
基本数量关系:
【练习巩固】
1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?
3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?
4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?
5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?
6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?
针对练习:
1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?
2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?
3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?
4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?
5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?
6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?
提高题:
1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?
2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?
;小学五年级奥数行程问题应用题及答案
【 #小学奥数# 导语】行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。 行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。以下是 无 整理的《小学五年级奥数行程问题应用题及答案》相关资料,希望帮助到您。
1.小学五年级奥数行程问题应用题及答案
1、甲、乙两地相距100千米,张山骑摩托车从甲地出发,1小时后李强驾驶汽车也从甲地出发,二人同时到达乙地。已知摩托车开始的速度是每小时50千米,中途减为每小时40千米;汽车的速度是每小时80千米,并在途中停留10分钟。那么,张山骑摩托车在出发分钟后减速。
答案与解析:
汽车行驶了100÷80×60=75(分)
摩托车行驶了75+60+10=145(分)
设摩托车减速前行驶了x分,则减速后行驶了(145-x)分。
5x+580-4x=600
x=20(分) 2、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少? 解:甲车到达终点时,乙车距离终点40×1=40千米 甲车比乙车多行40千米 那么甲车到达终点用的时间=40/(50-40)=4小时 两地距离=40×5=200千米
2.小学五年级奥数行程问题应用题及答案
1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的。速度应为多少?
解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).
2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?
解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米).
3.小学五年级奥数行程问题应用题及答案
1、A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。已知下坡路每小时行20千米,那么上坡路每小时行多少千米?
【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时
回的上坡时间+回的下坡时间=3.5小时
则:来回的上坡时间+来回的下坡时间=8小时
所以来回的下坡时间=60÷20=3(小时)
则:来回的上坡时间=8-3=5(小时)
故:上坡速度为60÷5=12(千米/时) 2、两辆汽车同时从两地相对开出,沿同一条公路行进.速度分别为80千米/小时和60千米/小时,在距两地中点30千米的某处相遇.两地相距多少千米?
【解析】两人相遇时快车比慢车多行了30×2=60千米,则两车共行驶60÷(80-60)=3小时,两地相距(80+60)×3=420千米
4.小学五年级奥数行程问题应用题及答案
1、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米? 解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇 (225-15)/(1-3/7)=210/(4/7)=367.5千米 2、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇? 解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12 那么再有(11/20)/(1/12)=6.6分钟相遇5.小学五年级奥数行程问题应用题及答案
1、甲乙两车从相距600千米的.两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米? 解: 速度和=42+58=100千米/小时 相遇时间=600/100=6小时 相遇时乙车行了58×6=148千米 或者 甲乙两车的速度比=42:58=21:29 所以相遇时乙车行了600×29/(21+29)=348千米 2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距? 解:将两车看作一个整体 两车每小时行全程的1/6 4小时行1/6×4=2/3 那么全程=188/(1-2/3)=188×3=564千米
基础的行程问题奥数应用题
基础的行程问题奥数应用题(1)
1、A、B两村相距2800米,小明从A村步行出发5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。已知小军骑车比小明步行每分钟多行130米,小明步行速度是每分钟多少米?
2、两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分钟速度是20米,甲、乙两车同时分别从相距90米的A、B两点相背而行。相遇后乙车立即返回,当它到达B点时,甲车过B点,又回到A点。此时甲车立即返回,再过多少分钟与乙车相遇?
3、甲、乙两人同时从南北两市镇相向出发,经过3小时,在一座小桥上相遇。如果他们仍从南北市镇出发,甲每小时多走2千米,乙提前0.5小时出发,结果又在小桥上相遇。如果甲晚出发0.5小时,乙每小时少走2千米,甲、乙两人还在小桥相遇。求南北两镇距离?
4、甲、乙二人分别从A、B两地同时出发,相向而行,出发时他们速度之比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么,A、B两地的距离是多少千米?
5、学校操场的400米跑道中套着300米的小跑道,大跑道与小跑道有200米路程相重。甲以每小时6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,同时从两跑道交接点A出发,他们第二次在跑道上相遇时,甲共跑了多少米?
基础的行程问题奥数应用题(2)
1、小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒立即骑自行车以每分钟280米的速度去追小明。爸爸出发几分钟后追上小明?
2、甲、乙、丙三人都从A城到B城,甲每小时行4千米,乙每小时行5千米,丙每小时行6千米,甲出发3小时后乙才出发,恰好三人同时到达B城。乙出发几小时后丙才出发?
3、四年级同学从学校步行到工厂参观,每分钟行75米,24分钟以后,因有重要事情,派张兵骑车从学校出发去追。如果他每分钟行225米,那么几分钟后可以追上同学们?
4、两名运动员在环形跑道上练习长跑。甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙。环形跑道一周长多少米?如果两人同时同地背向而行,经过多少分钟两人相遇?
5、我骑兵以每小时20千米的速度追击敌兵,当到达某站时,得知敌人已于2小时前逃跑。已知敌人逃跑的速度是每小时15千米。我骑兵几小时后可以追上敌人?
基础的行程问题奥数应用题(3)
1、甲、乙两地相距40千米,A和B同时从甲地出发去乙地,A步行每小时4千米,B骑摩托车每小时行40千米,B到达乙地后立即与C从乙地向甲地出发,C步行每小时5千米,B往返于A和C之间联络,遇到其中一个立即返回,当A和C相遇时,B共行了多少千米?
2、两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地所需时间多1/3。如果两车同时开出,相遇时快车比慢车多行48千米,求甲、乙两地的距离。
3、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离。
4、清晨4时,甲车从A地,乙车从B地同时相对开出,原指望在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前进350千米,在C地与乙相遇。相遇后,乙车立即以原来每小时60千米的速度向A地开去。问:乙车几点才能到达A地?
5、龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍。当它们从起点一起出发后龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时,龟已经它5000米,兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么兔子睡觉期间,龟跑了多少米?
小学六年级奥数行程问题应用题及答案
【 #小学奥数# 导语】行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。 行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。以下是 整理的《小学六年级奥数行程问题应用题及答案》相关资料,希望帮助到您。
1.小学六年级奥数行程问题应用题及答案
1、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?
答案:从甲到乙顺水速度:234÷9=26(千米/小时)。
从乙到甲逆水速度:234÷13=18(千米/小时)。
船速是:(26+18)÷2=22(千米/小时)。
水速是:(26-18)÷2=4(千米/小时)。
2、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。甲修车的时间内,乙走了多少米?
解:由甲共走了10000-200=9800(米),可推出在甲走的同时乙共走了9800÷4=2450(米),从而又可推出在甲修车的时间内乙走了10000-2450=7550(米)。列算式为10000一(10000-200)÷4=7550(米)
答:甲修车的时间内乙走了7550米。
2.小学六年级奥数行程问题应用题及答案
1、从甲地到乙地客车需12小时,货车需15小时,两车同时从甲乙两地相对开出,相遇时,客车比货车多行98千米,甲乙两地相距多少千米?
解:98÷(15-12)×(15+12),
=98÷3×27,
=98/3x27
=882(千米)
答:甲乙两地相距882千米
2、一列货车以每小时50千米的速度由甲站开往乙站,2小时后,一列客车以每小时55千米的速度由乙站驶向甲站,客车行了4小时与货车相遇,甲乙两站的距离是多少千米?
解:距离=50×2+(55+50)×4=520千米
答:甲乙两站的距离是520千米
3.小学六年级奥数行程问题应用题及答案
1、 甲乙两车同时从相距405千米的两城相对开出,如果甲车每小时行45千米,甲的速度是乙的1倍,问多少小时两车相遇?
解:405/(45+45)=4.5小时相遇
答:4.5小时两辆车相遇
2、 甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。已知汽车每小时行40千米,摩托车每小时行多少千米?
解: 摩托车的速度
(484-40×1.5)/4-40=424/4-40=106-40=66千米/小时
答:摩托车每小时行66千米/小时
3、甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米。两队合作8天后还差52米,这条水渠全长多少吗?
解: 全长=(75+75+2.5)×8+52=152。5×8+52=1272米
答:这条水渠全长1272米
4.小学六年级奥数行程问题应用题及答案
1、 两列火车从相距640千米的两地同时相对开出,5小时相遇,客车每小时行70千米,货车每小时行多少千米?
解: 640÷5-70
=128-70
=58(千米)
答:货车每小时行58千米
2、一舰艇和一货轮同时从A港口前往相距100千米的B港口,舰艇和货轮的速度分别为100千米/时和20千米/时,舰艇不停地往返于A、B两港口巡逻(巡逻掉头的时间忽略不记)。求货轮从A港口出发后与舰艇第二次相遇时用了多长时间?
解:100*4/(100+20)=10/3小时
答:货轮从A港口出发后与舰艇第二次相遇时用了10/3小时。
5.小学六年级奥数行程问题应用题及答案
张工程师每天早上8点准时被司机从家接到厂里。一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
这道题重要是要求出汽车速度与工程师的速度之比。
6.小学六年级奥数行程问题应用题及答案
1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?
2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回。假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?
答案
1、解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时)。
2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。
小学奥数行程问题应用题五篇
1.小学奥数行程问题应用题
1、甲、乙两辆汽车分别以不同的速度从东西两城相向而行,途中相遇,相遇点距离东城75千米,相遇后两车继续以原速前进,到达对方出发地后,两车立即返回,在途中第二次相遇,这时相遇点距东城45千米。求东西两城相距多少千米?
2、客车和货车分别以不同的速度从A、B两城相向而行,途中相遇,相遇点距B城40千米,相遇后两车继续以原速前进,到达对方出发地后,两车立即返回,在途中第二次相遇,这时相遇点距B城60千米,求A、B两城相距多少千米?
3、甲、乙两车同时从A、B两站相对开出,第一次相遇在离A站120千米处,然后各自安原速继续行驶,分别到达对方车站后立即返回,第二次相遇时离A站的距离占A、B两站距离的40%,A、B两站相距多少千米?
2.小学奥数行程问题应用题
1、A、B两地相距21千米,上午9时整,甲、乙两人分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,上午11时他们第二次相遇。此时,甲行的路程比乙行的路程多5千米。甲每小时行多少千米?
2、A、B两城相距160千米,早晨6时整,甲车和乙车分别从A、B两城出发,相向而行,甲车到达B城后立即返回,乙车到达A城后立即返回,12时整他们第二次相遇。此时,甲行的路程比乙行的路程多24千米。甲车每小时行多少千米?
3、东西两城相距120千米,上午8时整,客车和货车分别从东西两城出发,相向而行,客车到达西城后立即返回,货车到达东城后立即返回,11时整他们第二次相遇。此时,客车型的路程是货车的2倍。客车每小时行多少千米?
3.小学奥数行程问题应用题
1、甲、乙两地之间的距离是360千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行40千米,第二辆汽车每小时行50千米,第二辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?
2、A、B两城之间的距离是880千米,甲车和乙车同时从A城开往B城,甲车每小时行60千米,乙车车每小时行50千米,甲车车到达B城立即返回,两辆车从开出到相遇共用了多少小时?
3、东、西两城之间的距离是600千米,客车和货车同时从东城开往西城,客车每小时行65千米,货车车每小时行55千米,客车车到达西城立即返回,客车从开出到与货车相遇共用了多少小时?
4.小学奥数行程问题应用题
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?
5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?
5.小学奥数行程问题应用题
1、两辆汽车同时从工A、B两城相对开出,从A城开出的汽车每小时行38千米,从B城开出的汽车每小时行42千米,4.5小时后两车相遇,A、B两城的距离是多少千米?
2、两个筑路队合筑一条长12000米的公路,一个队每天筑115米,另一个队每天筑125米,多少天可以完工?
3、一辆卡车和一辆轿车分别从甲乙两城相对开出,卡车每小时行40千米,轿车每小时行60千米,6小时相遇。甲乙两城相距多少千米?
4、一辆卡车和一辆轿车同时从甲城开往乙城,卡车每小时行40千米,轿车每小时行60千米,行了6小时。两车相距多少千米?
5、快车每小时行60千米,是慢车每小时行的1.5倍,现两车分别从相距240千米的AB两地同时相对开出,在某地相遇,相遇地点离AB两地各多少千米?
行程问题应用题(有答案)
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇。东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。有了路程差和速度差就可以求出相遇时间了为8小时。其他计算就容易了。2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。当摩托车行到两地中点处,与汽车相距75千米。甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。因此慢车的速度为21千米/小时。2、兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东西两村相距多少千米?思路:先找到路程差,就可以求出相遇时间为5小时,则甲的速度就是15÷(5-4)=15(千米/小时)。两村相距是15×4=60(千米)2、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。甲到达B地后立即返回A地,在离B地3.2千米处相遇。A、B两地之间相距多少千米?3、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。小红每分钟走多少米?4、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。上午11时到达B地后立即返回,在距离B地24千米处相遇。求A、B两地相距多少千米?练习四:1、甲乙两队学生从相距18千米的两地同时出发,相向而行。一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?思路:要求两队相遇时,骑自行车的同学共行多少千米?就要求他的速度和时间。速度是已知的,时间就是两队的相遇时间。只要先求出相遇时间就可以了。2、两支队伍从相距55千米的两地相向而行。通信员骑马以每小时16千米的速度在两支队伍之间不断往返联络。已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米?3、甲乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。直到两人相遇时,这只狗一共跑了多少千米?4、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。
有关行程问题的应用题和答案
例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。解:30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇。例2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。解:甲的速度为:100÷(4-1+4÷2)=100÷5=20(千米/小时)乙的速度为:20÷2=10(千米/小时)答:甲的速度为20千米/小时,乙的速度为10千米/小时。请采纳
关于行程问题的小学奥数应用题
【 #小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。以下是 无 整理的《关于行程问题的小学奥数应用题》,希望帮助到您。 【篇一】
1.从甲市到乙市有一条公路,它分为三段。在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米。已知第一段公路的长恰好是第三段的2倍。现有两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后,在第二段的1/3处(从甲到乙方向的1/3处)相遇。问:甲、乙相距多少千米?
2.当两只小狗刚走完铁桥长的1/3时,一列火车从后面开来,一只狗向后跑,跑到桥头B时,火车刚好到达B;另一只狗向前跑,跑到桥头A时,火车也正好跑到A,两只小狗的速度是每秒6米,问火车的速度是多少?
3.小明沿着向上移动的自动扶梯从顶向下走到底,他走了150级,他的同学小刚沿着自动扶梯从底向上走到顶,走了75级,如果小明行走的速度是小刚的3倍,那么可以看到的自动抚梯的级数是多少?
4.一辆车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将原速提高25%,则可提前40分钟到达,求甲乙两地相距多少千米?
5.一只狗追赶一只兔子,狗跳跃6次的时间,兔只能跳跃5次,狗跳跃4次的距离和兔跳跃7次的距离相同,兔跑了5.5千米以后狗开始在后面追,兔又跑了多远被狗追上。
6.三种动物赛跑,狐狸的速度是兔子的4/5,兔子的速度是松鼠的2倍,一分钟松鼠比狐狸少跑12米,问:半分钟兔子比狐狸多跑几米?
7.A、B分别以每小时160千米和20千米的速度,在长为210千米的环形公路上同时、同地、同向出发。每当A车追上B车一次,A车减速1/3而B车增速1/3.问:在两车速度刚好相等的时候,它们分别行驶了多少千米?
8.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?
9、甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?
10、自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米。问:长9千米的路段有多少个? 【篇二】
1.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。甲每分40米,乙每分38米,丙每分36米。出发后,甲和乙相遇后3分钟又与丙相遇。这花圃的周长是多少?
2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。
3.有3个自行车运动员,他们进行一项从A城到B城的接力游戏,甲运动员先从A城出发,以每小时27千米的速度骑了34分钟,接着乙运动员以每小时36千米的速度骑了25分钟,然后丙运动员又以30千米的速度骑了28分钟到达B城。求A,B两城之间的距离是多少?
4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了分钟.
5.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?
6.有甲、乙、丙三人,甲从东村,乙丙从西村同时出发相向而行,途中,甲与乙相遇6分钟后,又与丙相遇。已知甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。求东西两村相距多少米?
7.甲乙丙三人行走的速度分别为每分钟30米、40米和50米。甲乙同在A地,丙在B地。甲乙与丙同时相向而行,丙遇见乙后10分钟又和甲相遇,求AB两地相距多少米?
8.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?
9.AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?
10.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米? 【篇三】
小学行程问题的应用题
小学行程问题的应用题
小学行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题,往往有些题目通过结合比例,很容易解出来,接下来我搜集了小学行程问题的应用题,欢迎查看,希望帮助到大家。
小学行程问题的应用题一
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?
5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?
6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?
7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地?
8、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?
9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?
10、 客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站间的路程是多少千米?
11、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?
12、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?
13、两地的距离是1120千米,有两列火车同时相向开出。第一列火车每小时行60千米,第二列火车每小时行48千米。在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?
14、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?
15、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度?
16、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?
17、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A、B之间不停地往返奔跑。如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?
小学行程问题的应用题二
1.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间
2.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
3.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
4.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
5.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案为22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的.10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示总路程
拓展:行程问题的等量关系
1、行程问题中三个量之间的关系
路程=速度×时间;速度=路程÷时间;时间=路程÷速度。
2、常见的行程问题有如下四种类型
(1)相遇问题
相遇问题中的基本等量关系式:
甲行驶的路程+乙行驶的路程=总路程。
(2)追及问题
追及问题中的基本等量关系式:
①同地不同时的追及问题:
慢者行驶的路程+先行的路程=快者行驶的路程。
②同时不同地的追及问题:
快者行驶的路程-慢者行驶的路程=初始相距的距离。
(3)流速问题
流速问题中的基本等量关系式:
顺水速度=静水速度+水流速度;
逆水速度=静水速度一水流速度。
(4)环形跑道上的行程问题
环形跑道上的行程问题的基本等量关系式:
①时同地同向而行且首次相遇时,有快者行驶的路程一慢者行驶的路程=一圈长。
②同时同地背向而行且首次相遇时,有两人所行驶的路程的和=一圈长。
;小学生奥数行程问题应用题
【 #小学奥数# 导语】应用题可以说是小学数学中最为重要的内容,是培养学生数学思维及解题能力的重要途径,做好应用题掉小学生非常重要,它是检验学生堆成掌握程度的重要途径,而且小学生在解答应用题分过程中培养了数学思维能力、问题的分析解决能力。以下是 整理的《小学生奥数行程问题应用题》相关资料,希望帮助到您。
1.小学生奥数行程问题应用题
1、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?
【解析】
S=(V火车-V人)×时间=(V火车-V车)×时间
V人=3.6千米/小时=1米/秒
V车=10.8千米/小时=3米/秒
S=(V火车-1)×22=(V火车-3)×26
S=286米
或者
合时间比=22:26=11:13
合速度比=13:11
V人:V车=1:3
(14-1):(14-3)=13:11
所以V火车=14米/秒
S=(14-1)×22=286米
2、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
【解析】
我们来分析一下,全程分成两部分,第一部分是水壶掉入水中,第二部分是追水壶
第一部分,水壶的速度=V水,小船的总速度则是=V船+V水
那么水壶和小船的合速度就是V船,所以相距2千米的时间就是:2/4=0.5小时
第二部分,水壶的速度=V水,小船的总速度则是=V船-V水
那么水壶和小船的合速度还是V船,所以小船追上水壶的时间还是:2/4=0.5小时
2.小学生奥数行程问题应用题
1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?
【解析】
核心公式:时间=路程÷速度
去时:T=12/4+8/5=4.6小时
返回:T=8/4+12/5=4.4小时
T总=4.6+4.4+1=10小时
7:00+10:00=17:00
整体思考:
全程共计:12+8=20千米
去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡
因此来回走的时间为:20/4+20/5=9小时
所以总的时间为:9+1=10小时
7:00+10:00=17:00
2、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。小明来回共走了多少千米?
【解析】
当路程一定时,速度和时间成反比
速度比=6:9=2:3
时间比=3:2
3+2=5小时,正好
S=6×3=18千米
来回为18×2=36千米
3.小学生奥数行程问题应用题
1、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3、甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
4、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?
5、一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?
4.小学生奥数行程问题应用题
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?
5.小学生奥数行程问题应用题
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31。5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
更多文章:
勃拉姆斯狂想曲(勃拉姆斯《狂想曲》第一首的创作背景和演奏技巧还有它的难度是多少)
2024年3月12日 15:10
知识改变命运演讲稿(关于读书改变人生,知识改变命运的开场白)
2024年8月22日 17:00