行程问题应用题(小学行程问题应用题)

2024-05-08 14:50:27 :18

行程问题应用题(小学行程问题应用题)

本文目录

小学行程问题应用题

小学行程问题应用题

  小学数学的行程应用题是非常重要的一个学习重点,在试卷的占比分十分多,需要我们细心的去对待。下面是我整理的小学行程问题应用题,欢迎阅读参考!

  小学行程问题应用题 (一)

  1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?

  2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?

  3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的’速度?

  4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?

  5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?

  6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?

  7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地?

  8、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?

  9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?

  10、 客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站间的路程是多少千米?

  11、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?

  12、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?

  13、两地的距离是1120千米,有两列火车同时相向开出。第一列火车每小时行60千米,第二列火车每小时行48千米。在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?

  14、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?

  15、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度?

  16、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?

  17、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A、B之间不停地往返奔跑。如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?

  小学行程问题应用题 (二)

  准备题:

  1、 小明和小红家相距600米,两人同时从家出发,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?

  2、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?

  3、两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?

  用4辆载重量相同的汽车,7次共运货物168吨,现有同样的汽车8辆,10次可以运货物多少吨?

  知识整理:

  基本数量关系:

  【练习巩固】

  1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?

  2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?

  3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?

  4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?

  5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

  6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?

  针对练习:

  1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?

  2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?

  3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?

  4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?

  5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?

  6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?

  提高题:

  1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?

  2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?

;

小学五年级奥数行程问题应用题及答案

【 #小学奥数# 导语】行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。 行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。以下是 无 整理的《小学五年级奥数行程问题应用题及答案》相关资料,希望帮助到您。

1.小学五年级奥数行程问题应用题及答案

  1、甲、乙两地相距100千米,张山骑摩托车从甲地出发,1小时后李强驾驶汽车也从甲地出发,二人同时到达乙地。已知摩托车开始的速度是每小时50千米,中途减为每小时40千米;汽车的速度是每小时80千米,并在途中停留10分钟。那么,张山骑摩托车在出发分钟后减速。

  答案与解析:

  汽车行驶了100÷80×60=75(分)

  摩托车行驶了75+60+10=145(分)

  设摩托车减速前行驶了x分,则减速后行驶了(145-x)分。

  5x+580-4x=600

  x=20(分)   2、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?   解:甲车到达终点时,乙车距离终点40×1=40千米   甲车比乙车多行40千米   那么甲车到达终点用的时间=40/(50-40)=4小时   两地距离=40×5=200千米 

2.小学五年级奥数行程问题应用题及答案

  1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的。速度应为多少?

  解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).

  2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?

  解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米).

3.小学五年级奥数行程问题应用题及答案

  1、A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。已知下坡路每小时行20千米,那么上坡路每小时行多少千米?

  【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时

  回的上坡时间+回的下坡时间=3.5小时

  则:来回的上坡时间+来回的下坡时间=8小时

  所以来回的下坡时间=60÷20=3(小时)

  则:来回的上坡时间=8-3=5(小时)

  故:上坡速度为60÷5=12(千米/时)   2、两辆汽车同时从两地相对开出,沿同一条公路行进.速度分别为80千米/小时和60千米/小时,在距两地中点30千米的某处相遇.两地相距多少千米?

  【解析】两人相遇时快车比慢车多行了30×2=60千米,则两车共行驶60÷(80-60)=3小时,两地相距(80+60)×3=420千米

4.小学五年级奥数行程问题应用题及答案

  1、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?   解:一种情况:此时甲乙还没有相遇   乙车3小时行全程的3/7   甲3小时行75×3=225千米   AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米   一种情况:甲乙已经相遇   (225-15)/(1-3/7)=210/(4/7)=367.5千米   2、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?   解:甲相当于比乙晚出发3+3+3=9分钟   将全部路程看作单位1   那么甲的速度=1/30   乙的速度=1/20   甲拿完东西出发时,乙已经走了1/20×9=9/20   那么甲乙合走的距离1-9/20=11/20   甲乙的速度和=1/20+1/30=1/12   那么再有(11/20)/(1/12)=6.6分钟相遇

5.小学五年级奥数行程问题应用题及答案

  1、甲乙两车从相距600千米的.两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?   解:   速度和=42+58=100千米/小时   相遇时间=600/100=6小时   相遇时乙车行了58×6=148千米   或者   甲乙两车的速度比=42:58=21:29   所以相遇时乙车行了600×29/(21+29)=348千米   2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?   解:将两车看作一个整体   两车每小时行全程的1/6   4小时行1/6×4=2/3   那么全程=188/(1-2/3)=188×3=564千米

基础的行程问题奥数应用题

基础的行程问题奥数应用题(1)

  1、A、B两村相距2800米,小明从A村步行出发5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。已知小军骑车比小明步行每分钟多行130米,小明步行速度是每分钟多少米?

  2、两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分钟速度是20米,甲、乙两车同时分别从相距90米的A、B两点相背而行。相遇后乙车立即返回,当它到达B点时,甲车过B点,又回到A点。此时甲车立即返回,再过多少分钟与乙车相遇?

  3、甲、乙两人同时从南北两市镇相向出发,经过3小时,在一座小桥上相遇。如果他们仍从南北市镇出发,甲每小时多走2千米,乙提前0.5小时出发,结果又在小桥上相遇。如果甲晚出发0.5小时,乙每小时少走2千米,甲、乙两人还在小桥相遇。求南北两镇距离?

  4、甲、乙二人分别从A、B两地同时出发,相向而行,出发时他们速度之比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么,A、B两地的距离是多少千米?

  5、学校操场的400米跑道中套着300米的小跑道,大跑道与小跑道有200米路程相重。甲以每小时6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,同时从两跑道交接点A出发,他们第二次在跑道上相遇时,甲共跑了多少米?

基础的行程问题奥数应用题(2)

  1、小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒立即骑自行车以每分钟280米的速度去追小明。爸爸出发几分钟后追上小明?

  2、甲、乙、丙三人都从A城到B城,甲每小时行4千米,乙每小时行5千米,丙每小时行6千米,甲出发3小时后乙才出发,恰好三人同时到达B城。乙出发几小时后丙才出发?

  3、四年级同学从学校步行到工厂参观,每分钟行75米,24分钟以后,因有重要事情,派张兵骑车从学校出发去追。如果他每分钟行225米,那么几分钟后可以追上同学们?

  4、两名运动员在环形跑道上练习长跑。甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙。环形跑道一周长多少米?如果两人同时同地背向而行,经过多少分钟两人相遇?

  5、我骑兵以每小时20千米的速度追击敌兵,当到达某站时,得知敌人已于2小时前逃跑。已知敌人逃跑的速度是每小时15千米。我骑兵几小时后可以追上敌人?

基础的行程问题奥数应用题(3)

  1、甲、乙两地相距40千米,A和B同时从甲地出发去乙地,A步行每小时4千米,B骑摩托车每小时行40千米,B到达乙地后立即与C从乙地向甲地出发,C步行每小时5千米,B往返于A和C之间联络,遇到其中一个立即返回,当A和C相遇时,B共行了多少千米?

  2、两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地所需时间多1/3。如果两车同时开出,相遇时快车比慢车多行48千米,求甲、乙两地的距离。

  3、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离。

  4、清晨4时,甲车从A地,乙车从B地同时相对开出,原指望在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前进350千米,在C地与乙相遇。相遇后,乙车立即以原来每小时60千米的速度向A地开去。问:乙车几点才能到达A地?

  5、龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍。当它们从起点一起出发后龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时,龟已经它5000米,兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么兔子睡觉期间,龟跑了多少米?

小学六年级奥数行程问题应用题及答案

【 #小学奥数# 导语】行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。 行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。以下是 整理的《小学六年级奥数行程问题应用题及答案》相关资料,希望帮助到您。

1.小学六年级奥数行程问题应用题及答案

  1、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?

  答案:从甲到乙顺水速度:234÷9=26(千米/小时)。

  从乙到甲逆水速度:234÷13=18(千米/小时)。

  船速是:(26+18)÷2=22(千米/小时)。

  水速是:(26-18)÷2=4(千米/小时)。

  2、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。甲修车的时间内,乙走了多少米?

  解:由甲共走了10000-200=9800(米),可推出在甲走的同时乙共走了9800÷4=2450(米),从而又可推出在甲修车的时间内乙走了10000-2450=7550(米)。列算式为10000一(10000-200)÷4=7550(米)

  答:甲修车的时间内乙走了7550米。

2.小学六年级奥数行程问题应用题及答案

  1、从甲地到乙地客车需12小时,货车需15小时,两车同时从甲乙两地相对开出,相遇时,客车比货车多行98千米,甲乙两地相距多少千米?

  解:98÷(15-12)×(15+12),

  =98÷3×27,

  =98/3x27

  =882(千米)

  答:甲乙两地相距882千米

  2、一列货车以每小时50千米的速度由甲站开往乙站,2小时后,一列客车以每小时55千米的速度由乙站驶向甲站,客车行了4小时与货车相遇,甲乙两站的距离是多少千米?

  解:距离=50×2+(55+50)×4=520千米

  答:甲乙两站的距离是520千米

3.小学六年级奥数行程问题应用题及答案

  1、 甲乙两车同时从相距405千米的两城相对开出,如果甲车每小时行45千米,甲的速度是乙的1倍,问多少小时两车相遇?

  解:405/(45+45)=4.5小时相遇

  答:4.5小时两辆车相遇

  2、 甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。已知汽车每小时行40千米,摩托车每小时行多少千米?

  解: 摩托车的速度

  (484-40×1.5)/4-40=424/4-40=106-40=66千米/小时

  答:摩托车每小时行66千米/小时

  3、甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米。两队合作8天后还差52米,这条水渠全长多少吗?

  解: 全长=(75+75+2.5)×8+52=152。5×8+52=1272米

  答:这条水渠全长1272米

4.小学六年级奥数行程问题应用题及答案

  1、 两列火车从相距640千米的两地同时相对开出,5小时相遇,客车每小时行70千米,货车每小时行多少千米?

  解:  640÷5-70

  =128-70

  =58(千米)

  答:货车每小时行58千米

  2、一舰艇和一货轮同时从A港口前往相距100千米的B港口,舰艇和货轮的速度分别为100千米/时和20千米/时,舰艇不停地往返于A、B两港口巡逻(巡逻掉头的时间忽略不记)。求货轮从A港口出发后与舰艇第二次相遇时用了多长时间?

  解:100*4/(100+20)=10/3小时

  答:货轮从A港口出发后与舰艇第二次相遇时用了10/3小时。 

5.小学六年级奥数行程问题应用题及答案

  张工程师每天早上8点准时被司机从家接到厂里。一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。

  答案解析:

  第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。

  这道题重要是要求出汽车速度与工程师的速度之比。

6.小学六年级奥数行程问题应用题及答案

  1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?

  2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回。假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?

  答案

  1、解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时)。

  2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。

小学奥数行程问题应用题五篇

1.小学奥数行程问题应用题

  1、甲、乙两辆汽车分别以不同的速度从东西两城相向而行,途中相遇,相遇点距离东城75千米,相遇后两车继续以原速前进,到达对方出发地后,两车立即返回,在途中第二次相遇,这时相遇点距东城45千米。求东西两城相距多少千米?

  2、客车和货车分别以不同的速度从A、B两城相向而行,途中相遇,相遇点距B城40千米,相遇后两车继续以原速前进,到达对方出发地后,两车立即返回,在途中第二次相遇,这时相遇点距B城60千米,求A、B两城相距多少千米?

  3、甲、乙两车同时从A、B两站相对开出,第一次相遇在离A站120千米处,然后各自安原速继续行驶,分别到达对方车站后立即返回,第二次相遇时离A站的距离占A、B两站距离的40%,A、B两站相距多少千米? 

2.小学奥数行程问题应用题

  1、A、B两地相距21千米,上午9时整,甲、乙两人分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,上午11时他们第二次相遇。此时,甲行的路程比乙行的路程多5千米。甲每小时行多少千米?

  2、A、B两城相距160千米,早晨6时整,甲车和乙车分别从A、B两城出发,相向而行,甲车到达B城后立即返回,乙车到达A城后立即返回,12时整他们第二次相遇。此时,甲行的路程比乙行的路程多24千米。甲车每小时行多少千米?

  3、东西两城相距120千米,上午8时整,客车和货车分别从东西两城出发,相向而行,客车到达西城后立即返回,货车到达东城后立即返回,11时整他们第二次相遇。此时,客车型的路程是货车的2倍。客车每小时行多少千米?

3.小学奥数行程问题应用题

  1、甲、乙两地之间的距离是360千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行40千米,第二辆汽车每小时行50千米,第二辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?

  2、A、B两城之间的距离是880千米,甲车和乙车同时从A城开往B城,甲车每小时行60千米,乙车车每小时行50千米,甲车车到达B城立即返回,两辆车从开出到相遇共用了多少小时?

  3、东、西两城之间的距离是600千米,客车和货车同时从东城开往西城,客车每小时行65千米,货车车每小时行55千米,客车车到达西城立即返回,客车从开出到与货车相遇共用了多少小时?

4.小学奥数行程问题应用题

  1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?

  2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?

  3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?

  4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?

  5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?

5.小学奥数行程问题应用题

  1、两辆汽车同时从工A、B两城相对开出,从A城开出的汽车每小时行38千米,从B城开出的汽车每小时行42千米,4.5小时后两车相遇,A、B两城的距离是多少千米?

  2、两个筑路队合筑一条长12000米的公路,一个队每天筑115米,另一个队每天筑125米,多少天可以完工?

  3、一辆卡车和一辆轿车分别从甲乙两城相对开出,卡车每小时行40千米,轿车每小时行60千米,6小时相遇。甲乙两城相距多少千米?

  4、一辆卡车和一辆轿车同时从甲城开往乙城,卡车每小时行40千米,轿车每小时行60千米,行了6小时。两车相距多少千米?

  5、快车每小时行60千米,是慢车每小时行的1.5倍,现两车分别从相距240千米的AB两地同时相对开出,在某地相遇,相遇地点离AB两地各多少千米?

行程问题应用题(有答案)

1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇。东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。有了路程差和速度差就可以求出相遇时间了为8小时。其他计算就容易了。2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。当摩托车行到两地中点处,与汽车相距75千米。甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。因此慢车的速度为21千米/小时。2、兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东西两村相距多少千米?思路:先找到路程差,就可以求出相遇时间为5小时,则甲的速度就是15÷(5-4)=15(千米/小时)。两村相距是15×4=60(千米)2、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。甲到达B地后立即返回A地,在离B地3.2千米处相遇。A、B两地之间相距多少千米?3、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。小红每分钟走多少米?4、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。上午11时到达B地后立即返回,在距离B地24千米处相遇。求A、B两地相距多少千米?练习四:1、甲乙两队学生从相距18千米的两地同时出发,相向而行。一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?思路:要求两队相遇时,骑自行车的同学共行多少千米?就要求他的速度和时间。速度是已知的,时间就是两队的相遇时间。只要先求出相遇时间就可以了。2、两支队伍从相距55千米的两地相向而行。通信员骑马以每小时16千米的速度在两支队伍之间不断往返联络。已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米?3、甲乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。直到两人相遇时,这只狗一共跑了多少千米?4、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。

有关行程问题的应用题和答案

例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。解:30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇。例2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。解:甲的速度为:100÷(4-1+4÷2)=100÷5=20(千米/小时)乙的速度为:20÷2=10(千米/小时)答:甲的速度为20千米/小时,乙的速度为10千米/小时。请采纳

关于行程问题的小学奥数应用题

【 #小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。以下是 无 整理的《关于行程问题的小学奥数应用题》,希望帮助到您。 【篇一】

  1.从甲市到乙市有一条公路,它分为三段。在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米。已知第一段公路的长恰好是第三段的2倍。现有两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后,在第二段的1/3处(从甲到乙方向的1/3处)相遇。问:甲、乙相距多少千米?

  2.当两只小狗刚走完铁桥长的1/3时,一列火车从后面开来,一只狗向后跑,跑到桥头B时,火车刚好到达B;另一只狗向前跑,跑到桥头A时,火车也正好跑到A,两只小狗的速度是每秒6米,问火车的速度是多少?

  3.小明沿着向上移动的自动扶梯从顶向下走到底,他走了150级,他的同学小刚沿着自动扶梯从底向上走到顶,走了75级,如果小明行走的速度是小刚的3倍,那么可以看到的自动抚梯的级数是多少?

  4.一辆车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将原速提高25%,则可提前40分钟到达,求甲乙两地相距多少千米?

  5.一只狗追赶一只兔子,狗跳跃6次的时间,兔只能跳跃5次,狗跳跃4次的距离和兔跳跃7次的距离相同,兔跑了5.5千米以后狗开始在后面追,兔又跑了多远被狗追上。

  6.三种动物赛跑,狐狸的速度是兔子的4/5,兔子的速度是松鼠的2倍,一分钟松鼠比狐狸少跑12米,问:半分钟兔子比狐狸多跑几米?

  7.A、B分别以每小时160千米和20千米的速度,在长为210千米的环形公路上同时、同地、同向出发。每当A车追上B车一次,A车减速1/3而B车增速1/3.问:在两车速度刚好相等的时候,它们分别行驶了多少千米?

  8.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?

  9、甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?

  10、自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米。问:长9千米的路段有多少个? 【篇二】

  1.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。甲每分40米,乙每分38米,丙每分36米。出发后,甲和乙相遇后3分钟又与丙相遇。这花圃的周长是多少?

  2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。

  3.有3个自行车运动员,他们进行一项从A城到B城的接力游戏,甲运动员先从A城出发,以每小时27千米的速度骑了34分钟,接着乙运动员以每小时36千米的速度骑了25分钟,然后丙运动员又以30千米的速度骑了28分钟到达B城。求A,B两城之间的距离是多少?

  4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了分钟.

  5.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回。在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?

  6.有甲、乙、丙三人,甲从东村,乙丙从西村同时出发相向而行,途中,甲与乙相遇6分钟后,又与丙相遇。已知甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。求东西两村相距多少米?

  7.甲乙丙三人行走的速度分别为每分钟30米、40米和50米。甲乙同在A地,丙在B地。甲乙与丙同时相向而行,丙遇见乙后10分钟又和甲相遇,求AB两地相距多少米?

  8.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?

  9.AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?

  10.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米? 【篇三】

小学行程问题的应用题

小学行程问题的应用题

  小学行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题,往往有些题目通过结合比例,很容易解出来,接下来我搜集了小学行程问题的应用题,欢迎查看,希望帮助到大家。

   小学行程问题的应用题一

  1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?

  2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?

  3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?

  4、兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?

  5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。问再过多少秒后,甲、乙两人相遇?

  6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?

  7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地?

  8、两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?

  9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?

  10、 客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站间的路程是多少千米?

  11、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?

  12、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?

  13、两地的距离是1120千米,有两列火车同时相向开出。第一列火车每小时行60千米,第二列火车每小时行48千米。在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?

  14、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?

  15、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度?

  16、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?

  17、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。两人同时从A点出发,在A、B之间不停地往返奔跑。如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?

   小学行程问题的应用题二

  1.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  答案为两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间

  2.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

  答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

  3.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

  答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

  4.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

  根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

  5.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

  答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

  6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

  答案为22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

  7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

  正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的.10米刚好追完

  8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

  答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解

  9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

  答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

  10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

  (1/6-1/8)÷2=1/48表示水速的分率

  2÷1/48=96千米表示总路程

   拓展:行程问题的等量关系

  1、行程问题中三个量之间的关系

  路程=速度×时间;速度=路程÷时间;时间=路程÷速度。

  2、常见的行程问题有如下四种类型

  (1)相遇问题

  相遇问题中的基本等量关系式:

  甲行驶的路程+乙行驶的路程=总路程。

  (2)追及问题

  追及问题中的基本等量关系式:

  ①同地不同时的追及问题:

  慢者行驶的路程+先行的路程=快者行驶的路程。

  ②同时不同地的追及问题:

  快者行驶的路程-慢者行驶的路程=初始相距的距离。

  (3)流速问题

  流速问题中的基本等量关系式:

  顺水速度=静水速度+水流速度;

  逆水速度=静水速度一水流速度。

  (4)环形跑道上的行程问题

  环形跑道上的行程问题的基本等量关系式:

  ①时同地同向而行且首次相遇时,有快者行驶的路程一慢者行驶的路程=一圈长。

  ②同时同地背向而行且首次相遇时,有两人所行驶的路程的和=一圈长。

;

小学生奥数行程问题应用题

【 #小学奥数# 导语】应用题可以说是小学数学中最为重要的内容,是培养学生数学思维及解题能力的重要途径,做好应用题掉小学生非常重要,它是检验学生堆成掌握程度的重要途径,而且小学生在解答应用题分过程中培养了数学思维能力、问题的分析解决能力。以下是 整理的《小学生奥数行程问题应用题》相关资料,希望帮助到您。

1.小学生奥数行程问题应用题

  1、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?

  【解析】

  S=(V火车-V人)×时间=(V火车-V车)×时间

  V人=3.6千米/小时=1米/秒

  V车=10.8千米/小时=3米/秒

  S=(V火车-1)×22=(V火车-3)×26

  S=286米

  或者

  合时间比=22:26=11:13

  合速度比=13:11

  V人:V车=1:3

  (14-1):(14-3)=13:11

  所以V火车=14米/秒

  S=(14-1)×22=286米

  2、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?

  【解析】

  我们来分析一下,全程分成两部分,第一部分是水壶掉入水中,第二部分是追水壶

  第一部分,水壶的速度=V水,小船的总速度则是=V船+V水

  那么水壶和小船的合速度就是V船,所以相距2千米的时间就是:2/4=0.5小时

  第二部分,水壶的速度=V水,小船的总速度则是=V船-V水

  那么水壶和小船的合速度还是V船,所以小船追上水壶的时间还是:2/4=0.5小时

2.小学生奥数行程问题应用题

  1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?

  【解析】

  核心公式:时间=路程÷速度

  去时:T=12/4+8/5=4.6小时

  返回:T=8/4+12/5=4.4小时

  T总=4.6+4.4+1=10小时

  7:00+10:00=17:00

  整体思考:

  全程共计:12+8=20千米

  去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡

  因此来回走的时间为:20/4+20/5=9小时

  所以总的时间为:9+1=10小时

  7:00+10:00=17:00

  2、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。小明来回共走了多少千米?

  【解析】

  当路程一定时,速度和时间成反比

  速度比=6:9=2:3

  时间比=3:2

  3+2=5小时,正好

  S=6×3=18千米

  来回为18×2=36千米

3.小学生奥数行程问题应用题

  1、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?

  2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?

  3、甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?

  4、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?

  5、一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?

4.小学生奥数行程问题应用题

  1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。

  2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

  3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

5.小学生奥数行程问题应用题

  1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?

  2、甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31。5千米的地方和乙车相遇,甲车每小时行多少千米?

  3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?

行程问题应用题(小学行程问题应用题)

本文编辑:admin

更多文章:


勃拉姆斯狂想曲(勃拉姆斯《狂想曲》第一首的创作背景和演奏技巧还有它的难度是多少)

勃拉姆斯狂想曲(勃拉姆斯《狂想曲》第一首的创作背景和演奏技巧还有它的难度是多少)

本文目录勃拉姆斯《狂想曲》第一首的创作背景和演奏技巧还有它的难度是多少勃拉姆斯狂想曲op.79no.2几级勃拉姆斯狂想曲第二首是不是炫技型的勃拉姆斯狂想曲op.79 no.2和普罗科菲耶夫第二钢琴奏鸣曲第四乐章哪个难勃拉姆斯狂想曲op.79

2024年3月12日 15:10

杨利伟写的书叫什么名字?朗读者杨利伟《天地九重》

杨利伟写的书叫什么名字?朗读者杨利伟《天地九重》

本文目录杨利伟写的书叫什么名字朗读者杨利伟《天地九重》天有九重,地有十八层,为什么会有如此一说《天地九重》pdf下载在线阅读,求百度网盘云资源天地九重的含义是什么天地九重主要内容概括天地九重的读音读《天地九重》有感天地九重标题的含义朗读者杨

2024年8月29日 08:10

王二小的电影?电影《王二小》的梗概200左右

王二小的电影?电影《王二小》的梗概200左右

本文目录王二小的电影电影《王二小》的梗概200左右《抗日英雄王二小》观后感800字_观后感王二小的相关影视王二小观后感300字_观看影片王二小有感300字王二小的电影 两点带你了解剧情红色电影观后感600字 《英雄王二小》观后感王二小的电影

2024年8月25日 21:00

打架怎么判定正当防卫?正当防卫需要赔偿医药费吗

打架怎么判定正当防卫?正当防卫需要赔偿医药费吗

本文目录打架怎么判定正当防卫正当防卫需要赔偿医药费吗正当防卫法2023正当防卫与互殴的界定在法律条文里什么叫做正当防卫正当防卫的程度范围有关正当防卫的所有法律条文正当防卫应该注意哪些问题正当防卫认定的六大苛刻限制正当防卫论正当防卫与防卫过当

2024年4月6日 03:10

七年级下册英语期中试卷(七年级英语下期中试卷及答案)

七年级下册英语期中试卷(七年级英语下期中试卷及答案)

本文目录七年级英语下期中试卷及答案七年级下册英语期中考试试卷「」七年级下册英语期中试卷七年级期中下册英语试卷七年级英语下册期中测试卷及答案七年级下册英语期中考试试卷七年级下册英语期中考试卷子最七年级英语下册期中测试题(带听力及答案)(2)七

2024年5月13日 15:10

晚自习有哪些好处呢?如何看待晚自习

晚自习有哪些好处呢?如何看待晚自习

本文目录晚自习有哪些好处呢如何看待晚自习晚自习时间是多久晚自习是用来做什么的高中晚自习一般到几点为什么上晚自习申请晚自习原因晚自习有什么用呢晚自习几点结束上晚自习的利和弊有哪些晚自习有哪些好处呢对于在大学彻底放飞自我的同学来说,晚自习无非是

2024年3月31日 05:00

经典红歌赏析(十首最经典红歌儿歌)

经典红歌赏析(十首最经典红歌儿歌)

本文目录十首最经典红歌儿歌如何欣赏中国的红歌经典红歌赏析推荐抗日红歌并说理由红歌歌曲(激荡革命情怀)十首最经典红歌儿歌十首最经典红歌儿歌:《歌唱祖国》、《中国么么哒》、《娃哈哈》、《我和我的祖国》、《国旗国旗真美丽》、《我们是祖国的花朵》、

2024年9月6日 11:30

会议系统工程(会议系统工程应该怎么设计)

会议系统工程(会议系统工程应该怎么设计)

本文目录会议系统工程应该怎么设计什么是会议系统大型的会议系统工程实施中一般存在哪些问题对于会议系统工程技术有什么要求会议系统招标是货物类还是工程类智能工程电子会议系统的组成做多功能会议系统工程时需要满足怎样的效果会议系统工程应该怎么设计会议

2024年7月14日 11:50

高一期末总结(高一期末自我总结300字左右)

高一期末总结(高一期末自我总结300字左右)

本文目录高一期末自我总结300字左右高一期末总结 高一期末总结的范文学生高一期末总结报告范文10篇高一期末个人总结600字6篇学生高一期末自我总结高一学生期末自我总结高一期末考试总结作文高一学期期末总结300字左右5篇高一期末考试总结500

2024年7月27日 05:00

新课程的学生学习方式有哪些?如何高效率的学习大学课程

新课程的学生学习方式有哪些?如何高效率的学习大学课程

本文目录新课程的学生学习方式有哪些如何高效率的学习大学课程新课程倡导的学习方式是什么学习汽修主要课程有哪些简述学习的课程概念计算机网络课程主要学什么怎样才能快速的学完一门课程呢思想政治课程主要学习什么内容中医大二的课程主要是学习哪些内容教师

2024年7月6日 17:50

知识改变命运演讲稿(关于读书改变人生,知识改变命运的开场白)

知识改变命运演讲稿(关于读书改变人生,知识改变命运的开场白)

本文目录关于读书改变人生,知识改变命运的开场白阅读点亮人生,知识改变命运,这篇演讲稿怎么写阅读点亮人生知识改变命运的演讲稿怎么写关于《知识改变命运,教育改善人生》的演讲稿知识改变命运演讲稿三篇知识改变命运阅读点亮人生的演讲稿四年级最好是自己

2024年8月22日 17:00

噤若寒蝉造句(禁若寒蝉指什么意思)

噤若寒蝉造句(禁若寒蝉指什么意思)

本文目录禁若寒蝉指什么意思用噤若寒蝉造句噤若寒蝉的意思噤若寒蝉的造句噤若寒蝉什么意思噤若寒蝉的意思及造句噤若寒蝉形容什么噤若寒蝉造句禁若寒蝉指什么意思噤若寒蝉的释义是:像晚秋时的蝉那样一声不响。形容受到压制不敢作声。一、成语出处噤若寒蝉的出

2024年4月24日 14:20

2021春节放假通知(2021年过年放假时间)

2021春节放假通知(2021年过年放假时间)

本文目录2021年过年放假时间2021春节放假调休时间表法院春节放几天假2021年春节法定休假几天 2021年春节有多少天假春节时间2021放假时间2021年法定节假日时间是什么时候2021春节放假安排日历 春节放假2021年调休安排202

2024年4月10日 20:00

网络游戏角色名字?网络游戏人物名字 网络游戏角色名大全

网络游戏角色名字?网络游戏人物名字 网络游戏角色名大全

本文目录网络游戏角色名字网络游戏人物名字 网络游戏角色名大全网络游戏角色名字  1、妖姬三国、狂斩三国、夜色ザ微凉、金刚狼、繁星坠天行泪、 超级英雄复仇者、cf年少轻狂、雪星梦缘、离沫倾城 winter、格斗冒险岛、全民大消除   2、偷

2024年6月30日 10:00

新疆工作座谈会(新疆第二次座谈会召开时间)

新疆工作座谈会(新疆第二次座谈会召开时间)

本文目录新疆第二次座谈会召开时间第二次中央新疆工作座谈会以来新疆经济发展的成就中央新疆座谈会总共开了几次第一次中央新疆工作座谈会召开时间是什么时候中央新疆工作座谈会的意义第三次中央新疆工作座谈会提出八个坚持是什么第三次新疆座谈会议内容是什么

2024年9月10日 20:30

卡酷岛童鞋质量怎么样?卡酷岛怎么注册

卡酷岛童鞋质量怎么样?卡酷岛怎么注册

本文目录卡酷岛童鞋质量怎么样卡酷岛怎么注册卡酷岛童鞋是几线品牌怎么给卡酷岛的宠物加血卡酷岛怎么换头像卡酷岛童鞋和乖乖超人哪个好卡酷岛童鞋质量怎么样好。1、材料选择:卡酷岛童鞋采用高品质的材料,比如优质的皮革和耐磨的橡胶鞋底,这些材料能够提供

2024年5月27日 14:20

上班无聊的时候干什么(上班闲的时候做什么)

上班无聊的时候干什么(上班闲的时候做什么)

本文目录上班闲的时候做什么上班无聊的时候干点啥好呢上班无聊,你会做点什么呢上班无聊做什么好上班太无聊,我能干什么呢你工作无聊时,会做什么呢每天上班都好无聊,我要做什么才好呢上班无聊时可以干点啥上班没事做无聊的时候可以做什么上班无聊的时候做什

2024年6月27日 21:10

新时代好少年手抄报(新时代好少年手抄报内容简短)

新时代好少年手抄报(新时代好少年手抄报内容简短)

本文目录新时代好少年手抄报内容简短新时代好少年手抄报内容怎么写争做新时代好少年手抄报内容有哪些呢新时代四有好少年手抄报 新时代手抄报争做新时代好少年手抄报内容真做新时代好少年手抄报怎么画关于争做新时代好少年为主题的手抄报 爱为主题的手抄报学

2024年6月7日 15:00

高级财务管理(高级财务管理课程讲什么内容)

高级财务管理(高级财务管理课程讲什么内容)

本文目录高级财务管理课程讲什么内容高级财务管理在公司治理中的作用高级财务管理是什么意思你认为高级财务管理应由哪些内容组成什么是高级财务管理学高级财务管理与人工智能专业就业前景高级财务管理具有哪些特征数智化时代如何成为一名合格的高级财务管理人

2024年6月18日 12:10

春节后上班时间(春节过后上班时间)

春节后上班时间(春节过后上班时间)

本文目录春节过后上班时间春节后初几上班信托公司春节后什么时候上班年后什么时候上班春节后哪天上班民政局春节后初几上班年后初几上班社保局春节后几号上班节后上班时间春节过后上班时间春节过后上班时间为正月初七。大多数人春节后上班,都会出现“节后综合

2024年7月9日 13:50