初三数学二次函数(初三数学二次函数知识点总结)
本文目录
- 初三数学二次函数知识点总结
- 初三数学二次函数常见知识点整理
- 初三数学二次函数最全知识点整理
- 初三数学如何学二次函数
- 初三二次函数学不会怎么办
- 初三数学二次函数知识点归纳
- 初三数学二次函数重要知识点整理
- 求初三数学二次函数所有公式
- 初三数学二次函数知识点总结归纳
- 二次函数的初三数学知识点归纳
初三数学二次函数知识点总结
同学们都知道初中数学中函数占据一个了很重要的比值,很多题目解题都需要运用到二次函数。下面我为大家整理了初三数学二次函数知识点总结,希望对大家有所帮助。
二次函数的定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a》0时,开口方向向上,a《0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大),则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
二次函数的三种表达式
一般式:y=ax²+bx+c(a,b,c为常数,a≠0);
顶点式:y=a(x-h)²+k;
交点式:y=a(x-x₁)(x-x₂)。
注:在3种形式的互相转化中,有如下关系:
h=-b/2a;
k=(4ac-b²)/4a;
x₁,x₂=(-b±√b²-4ac)/2a。
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b²)/4a)。
当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)。
6.抛物线与x轴交点个数:
Δ=b²-4ac>0时,抛物线与x轴有2个交点。
Δ=b²-4ac=0时,抛物线与x轴有1个交点。
Δ=b²-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b±√b²-4ac的值的相反数,乘上虚数i,整个式子除以2a)。
用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。
抛物线y=ax^2+bx+c的图象
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac》0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x1-x2|。
当△=0.图象与x轴只有一个交点;
当△《0.图象与x轴没有交点.当a》0时,图象落在x轴的上方,x为任何实数时,都有y》0;当a《0时,图象落在x轴的下方,x为任何实数时,都有y《0。
初三数学二次函数常见知识点整理
想要学好数学知识点是很重要的,下面我就大家整理一下初三数学二次函数常见知识点整理,仅供参考。二次函数定义 定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。 二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0); 顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k)); 二次函数的图像与性质 1 二次函数 的图像是一条抛物线。 2抛物线是轴对称图形。对称轴为直线x=-b/2a。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。 3二次项系数a决定抛物线的开口方向。 当a》0时,抛物线向上开口; 当a《0时,抛物线向下开口。 4一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab》0),对称轴在y轴左; 当a与b异号时(即ab《0),对称轴在y轴右。 5抛物线与x轴交点个数 Δ=b^2-4ac》0时,抛物线与x轴有2个交点; Δ=b^2-4ac=0时,抛物线与x轴有1个交点; Δ=b^2-4ac《0时,抛物线与x轴没有交点。 二次函数抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a》0时,抛物线向上开口;当a《0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab》0),对称轴在y轴左; 当a与b异号时(即ab《0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 以上就是我为大家整理的初三数学二次函数常见知识点整理。
初三数学二次函数最全知识点整理
初中数学二次函数是比较难的一部分,下面我为大家整理 二次函数知识点 ,仅供参考。
初中数学二次函数知识点总结
二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k
交点式:y=a(x-x)(x-x)
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
抛物线y=ax^2+bx+c(a≠0),若a》0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a《0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
如何提高初中数学成绩如果平时遇到一道题你就放弃,请问考试中孩子会懂得坚持吗?孩子会理解坚持的意义吗?那么信心也是一个道理,平时遇到问题都有信心解决,考试中遇到难题第一想法是干劲十足,相信自己有办法解决。
再者,平时的难题,一个思路不通孩子会换一个思路想问题,而不爱专研的孩子就是一根筋走到底,他的心里只有一种解决方法,再无其他。何谈灵活运用呢。如果一道题你有五种方法,彼此融会贯通,请问你是否有信心做对类似的题目呢?
书读百遍,其义自现。我父亲常劝导我一句话,“先把课本读厚,再把课本读薄”。其余时间几乎没有在我学习上费过心思,全拼自己的自学自悟。学习也一样,见得题目多了,理解的技巧熟练了,可以避免计算误区和一些弯路。所以必要的计算练习是不可或缺的。有指导性和针对性的训练也是不可或缺的。
初三数学如何学二次函数
初三数学中二次函数怎么学,重要的解题诀窍是什么,正在备考的考生看过来,下面由我为你精心准备了“初三数学如何学二次函数?”,持续关注本站将可以持续获取更多的考试资讯!
初三数学如何学二次函数?
一、二次函数重要解题诀窍
1、二次函数的定义和知识点:形如y=ax^2+bx+c(a≠0,其中a、b、c是常数)的函数为二次函数。
(1)、a决定抛物线的开口方向和形状大小,当a》0时,开口向上,当a《0时开口向下;︱a︱的值越大,开口就越小;当b=0时,抛物线的轴对称是Y轴;当c=0时,抛物线经过原点;当b和c同时为0时,其顶点就是原点。
(2)、抛物线y=ax2+bx+c(a≠0)与Y轴的交点坐标为(0,c);求与X轴的两个交点坐标的方法是令y=0,然后解关于ax2+bx+c=0的方程,得出的x的解就是与x轴的交点的横坐标。
2、会求与二次函数y=ax^2+bx+c(a≠0)关于X轴、关于Y轴或者关于顶点对称的新二次函数的解析式。
(1)与二次函数y=ax^2+bx+c(a≠0)关于X轴对称的新解析式为y=-ax^2-bx-c即a、c、b都变成相反数。
(2)关于Y轴对称的新解析式为y=ax^2-bx+c,即a和c不变,b变成相反数。 即a和c不变,b变成相反数。
二、二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;
顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
三、二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
初三二次函数学不会怎么办
初三二次函数学不会的解决方法如下:
1、理解二次函数的基本概念和表达形式:包括二次函数的三种表达式:一般式、顶点式和双根式,以及a、b、c等参数的意义和作用。
2、记忆公式:对于二次函数的一些基本公式,如顶点公式、对称轴公式等,需要牢记。
3、理解图像:二次函数的图像是理解其性质的重要工具。需要学会通过图像理解二次函数的开口方向、对称轴位置、顶点坐标等性质。
4、刷题:通过大量的练习,加深对二次函数的理解。在做题过程中,要学会画图,数形结合,将问题转化为数学问题。
5、寻求帮助:如果遇到困难,可以向老师或同学寻求帮助,共同探讨解决问题的方法。
6、培养对数学的兴趣:兴趣是最好的老师,培养对数学的兴趣,可以增加学习的动力和信心。不要气馁,学习是一个逐步提高的过程,相信自己,坚持下去就一定能学会二次函数。
函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的由来
中文数学书上使用的“函数”一词是转译词。是中国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”
中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。方程的确切定义是指含有未知数的等式。《九章算术》中,意思指的是包含多个未知量的联立一次方程。
初三数学二次函数知识点归纳
二次函数作为初三数学重难考点之一,一直被很多同学头疼。下面我就整理了初三数学二次函数相关知识点,供大家参考。
二次函数的概念
1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。
2.二次函数的结构特征:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。
⑵是常数,是二次项系数,是一次项系数,是常数项。
初三数学二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。
顶点式:y=a(x-h)^2+k。
交点式:y=a(x-x₁)(x-x₂)。
注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2a。
二次函数的性质
1.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
2.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点;
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
初三数学二次函数图像
对于一般式:
①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。
②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。
③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。
④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
对于顶点式:
①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)
初三数学二次函数重要知识点整理
数学的二次函数是非常重要的,下面我就大家整理一下初三数学二次函数重要知识点整理,仅供参考。二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2;+k 交点式:y=a(x-x1)(x-x2) 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a 二次函数顶点坐标公式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k 对于 二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a) 交点式:y=a(x-x?)(x-x ?) 其中x1,2= -b±√b^2-4ac 注:在3种形式的互相转化中,有如下关系: ______ h=-b/2a= (x?+x?)/2 k=(4ac-b^2)/4a 与x轴交点:x?,x?=(-b±√b^2-4ac)/2a 二次函数顶点坐标公式推导 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a) 二次函数重要考点整理 考点: 函数 以及函数的定义域、函数值等有关概念,函数的表示法,常值函数 考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义. 考点:用待定系数法求二次函数的解析式 考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法. 注意求函数解析式的步骤:一设、二代、三列、四还原. 考点:画二次函数的图像 考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像. 考点:二次函数的图像及其基本性质 考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质. 注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式. 以上就是我为大家整理的初三数学二次函数重要知识点整理。
求初三数学二次函数所有公式
一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。 顶点式:y=a(x-h)�0�5+k或y=a(x+m)�0�5+k (两个式子实质一样,但初中课本上都是第一个式子) 交点式(与x轴):y=a(x-x1)(x-x2) 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a》0时,开口方向向上,a《0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 x1,x2=/2a(即一元二次方程求根公式)二次函数的图像 在平面直角坐标系中作出二次函数y=x的平方;的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b�0�5)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b�0�5-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a《0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a》0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b�0�5-4ac>0时,抛物线与x轴有2个交点。 Δ= b�0�5-4ac=0时,抛物线与x轴有1个交点。 _______ Δ= b�0�5-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b�0�5-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a》0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b�0�5/4a;在{x|x《-b/2a}上是减函数,在{x|x》-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2;/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax�0�5+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b�0�5)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax�0�5+bx+c ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b�0�5)/4a); ⑷Δ=b�0�5-4ac, Δ>0,图象与x轴交于两点: (/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)�0�5+t 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b�0�5)/4a); ③y=a(x-x1)(x-x2) a≠0,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2; +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax^2; y=ax^2;+K y=a(x-h)^2; y=a(x-h)^2+k y=ax^2+bx+c 顶点坐标 (0,0) (0,K) (h,0) (h,k) (-b/2a,sqrt/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h》0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到, 当h《0时,则向左平行移动|h|个单位得到. 当h》0,k》0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象; 当h》0,k《0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象; 当h《0,k》0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)�0�5+k的图象; 当h《0,k《0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)�0�5+k的图象; 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax^2+bx+c(a≠0)的图象:当a》0时,开口向上,当a《0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,/4a). 3.抛物线y=ax^2+bx+c(a≠0),若a》0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a《0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小. 4.抛物线y=ax^2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b^2-4ac》0,图象与x轴交于两点A(x�6�9,0)和B(x�6�0,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x�6�0-x�6�9| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△《0.图象与x轴没有交点.当a》0时,图象落在x轴的上方,x为任何实数时,都有y》0;当a《0时,图象落在x轴的下方,x为任何实数时,都有y《0. 5.抛物线y=ax^2+bx+c的最值:如果a》0(a《0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax^2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x�6�9)(x-x�6�0)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
初三数学二次函数知识点总结归纳
二次函数是初三数学的重点,学生们一定要扎实掌握,我整理了一些重要的二次函数知识点。
定义
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向)。
二次函数表达式的右边通常为二次三项式。
二次函数的三种表达式
1、一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);
2、顶点式:y=a(x-h)^2+k;
3、交点式:y=a(x-x₁)(x-x₂)。
抛物线的性质
1、抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
2、抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)。
6、抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)。
以上是我整理的二次函数的知识点,希望能帮到你。
二次函数的初三数学知识点归纳
1.二次函数的一般形式:y=ax2+bx+c.(a0) 2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距,即二次函数图象必过(0,c)点. 3. y=ax20)的特性:当y=ax2+bx+c (a0)中的.b=0且c=0时二次函数为y=ax20); 这个二次函数是一个特殊的二次函数,有下列特性: (1)图象关于y轴对称;(2)顶点(0,0); 4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值,从而求出解析式-------待定系数法. 5.二次函数的顶点式:y=a(x-h)2+k(a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k. 6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式. 7.二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下: k值增大=图象向上平移; k值减小图象向下平移; (x-h)值增大=图象向左平移; (x-h)值减小图象向右平移. 8.二次函数y=ax2+bx+c (a0)的图象及几个重要点的公式: 9.二次函数y=ax2+bx+c(a0)中,a、b、c与的符号与图象的关系: (1)a=抛物线开口向上;0 抛物线开口向下; (2)c=抛物线从原点上方通过;c=0 抛物线从原点通过; c=抛物线从原点下方通过; (3)a, b异号=对称轴在y轴的右侧;a, b同号=对称轴在y轴的左侧; b=0对称轴是y轴; (4)b2-4ac=抛物线与x轴有两个交点; b2-4ac =0=抛物线与x轴有一个交点(即相切); b2-4ac=抛物线与x轴无交点. 10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.
更多文章:
王力宏火力全开歌词(求王力宏一首歌 哦啊啊啊啊啊啊哦什么的啊很高音的)
2024年9月26日 13:40
瑞恩的井起因是什么经过是什么结果是什么?瑞恩的井基金会还在吗
2024年8月26日 22:00