电磁学第二版答案(大学物理,电磁学的问题)
本文目录
- 大学物理,电磁学的问题
- 我是苦逼的物理生,求热学、电磁学、VB、概率论与数理统计 这几本书的重点和课后答案,很重要,急求
- 跪求大学物理中赵凯华的《电磁学》pdf
- 有关磁学的问题(一定要精通电磁学)
- 《大学物理学》 张三慧 我要电磁学的全部答案word版本
大学物理,电磁学的问题
首先,由高斯定理或积分计算可知“无限大”均匀带电平面 A周围空间的电场强度为 E=+P/2ε,方向指向两侧;{ 这可根据问题的对称性,在平面A上任意区域(面积S)两侧等距离处取平行的全等面积,围成一柱体,则电场积分为 E*2S=+P*S/ε.}其次,导体板 B是个等势体,内部无电场,表面电荷密度σ大小正比于附近的外部场强E,即 |σ|=εE=+P/2,正负由场强方向与外法线方向是否同向决定{这也可由在表面区域附近两侧应用高斯定理得到};对靠近A的一侧,外法线与电场反向,故σ取负值-P/2;对远离A的一侧,外法线与电场同向,故σ取正值+P/2。
我是苦逼的物理生,求热学、电磁学、VB、概率论与数理统计 这几本书的重点和课后答案,很重要,急求
热学是研究物质处于热状态时的有关性质和规律的物理学分支,它起源于人类对冷热现象的探索。人类生存在季节交替、气候变幻的自然界中,冷热现象是他们最早观察和认识的自然现象之一。 对中国山西芮城西侯度旧石器时代遗址的考古研究,说明大约180万年前人类已开始使用火;约在公元前二千年中国已有气温反常的记载;在公元前,东西方都出现了热学领域的早期学说。中国战国时代的邹衍创立了五行学说,他把水、火、木、金、土称为五行,认为这是万事万物的根本。古希腊时期,赫拉克利特提出:火、水、土、气是自然界的四种独立元素。这些都是人们对自然界的早期认识。 1714年,华伦海特改良水银温度计,定出华氏温标,建立了温度测量的一个共同的标准,使热学走上了实验科学的道路。经过许多科学家两百年的努力,到1912年,能斯脱提出热力学第三定律后,人们对热的本质才有了正确的认识,并逐步建立起热学的科学理论。 热学 历史上对热的认识,出现过两种对立的观点。18世纪出现过热质说,把热看成是一种不生不灭的流质,一个物体含有的热质多,就具有较高的温度。与此相对立的是把热看成物质的一种运动的形式的观点,俄国科学家罗蒙诺索夫指出热是分子运动的表现。 针对热质说不能解释摩擦生热的困难,许多科学家进行了各种摩擦生热的实验,特别是朗福德的实验,他用钝钻头钻炮筒,因钻头与炮筒内壁摩擦,在几乎没产生碎屑的情况下使水沸腾;1840年以后,焦耳做了一系列的实验,证明热是同大量分子的无规则运动相联系的。 焦耳的实验以精确的数据证实了迈尔热功当量概念的正确性,使人们摈弃了热质说,并为能量守恒定律奠定了实验基础。与此同时,热学的两类实验技术——测温术和量热术也得到了发展。 热学主要研究热现象及其规律,它有两种不同描述方法——热力学和统计物理。热力学是其宏观理论,是实验规律。统计物理学是其微观描述方法,它通过物理简化模型,运用统计方法找出微观量与宏观量之间的关系。本课程内容包括热力学平衡和气体分子运动论的基本概念、气体分子速率及能量的分布律、气体中的输运过程、热力学第一定律和第二定律、固体、液体和相变。 本段发展简史 人类对热现象的认识首先源于对火的认识 古代物理学中的热学 古代西方:火、土、水、气是构成万物的四个主要元素。 中国古代:金、木、水、火、土五行学说。 实际古代物理学主要成就是古代原子论,人们用古代原子论解释一切现象,其特点是猜测性的思辫。 17、18世纪对热的认识 热是物质内部分子运动的表现这一基本思想逐步确立,但由于缺乏精确实验根据,尚未形成科学理论。 18世纪中叶以后,系统的计温学和量热学的建立,使热现象的研究走上实验科学的道路,由于各种物理现象的相互联系尚未被揭示出来,“热质”这一特殊的“物质”被臆想出来,在以“将错就错”的形式发挥一定作用后最终退出历史舞台。 19世纪的热学 在1644年笛卡儿在《哲学原理》中就提出了运动不变的思想,但没有给出具体反映这种不变性本质的物理概念。随着人们对自然界认识的不断加深和拓广,逐步发现不同的物理现象之间存在着内在的联系。德国科学家迈耶从哲学角度首先确定了这种永恒性,他坚信“无不生有,有不变无”,通过对马拉车运动过程进行了细致地分析,指明轮子摩擦散热和马做功一定有确定的比例;后来英国科学家焦耳通过大量精确和严格的实验,测量出热功当量为4.18J/cal,确立了建立能量转化与守恒定律的实验基础;德国科学家亥姆霍兹最终建立了能量守恒定律的数学表达。他从v=推出了mgh=1/2mv2,并建议用1/2mv2代替mv表示机械运动的强弱,用来度量能量的改变。能量转化与守恒定律的建立过程说明了正确的哲学思想、严格的实验和严密的数学推理是自然科学认知过程的三个基本要素。 热学 热力学第一定律就是能量转化与守恒定律在热现象过程中的具体表现。在热力学第一定律建立以后,德国物理学家克劳修斯和英国物理学家开尔文通过分别对法国工程师卡诺关于理想热机效率问题研究成果的细致分析,各自独立的发现了热力学第二定律,并找到了反映物质各种性质的热力学函数。 1850年前后,物理学界普遍认识到了热现象和分子运动的联系,但微观结构和分子运动的物理图像仍是模糊或未知的。凭借着对分子运动的假设和运用统计方法,克劳修斯正确地导出了气体实验公式。另外,麦克斯韦和玻尔兹曼在研究分子分布规律和平衡态方面也做出了卓有成效的工作。后来吉布斯把玻耳兹曼和麦克斯韦所创立的统计方法推广而发展成为系统的理论,将平衡态和涨落现象统一起来并结合分子动理论一起构成统计物理学。 现代物理中的热学 在1900年欧洲物理年会上,英国物理学家开尔文发表过一段非常著名的讲话,其中他不仅讲道“19世纪已 热学将物理学大厦全部建成,今后物理学家的任务就是修饰完善这座大厦了”,而且又讲道“在物理学的天空中几乎一片晴朗,只存在两朵乌云。”他所指的两朵乌云其实就是迈克尔逊—莫雷测量“以太风”实验和测量黑体辐射实验中用现有的经典物理无法解释。后来对“以太”的测量的研究和爱因斯坦狭义相对论的建立,揭示了经典牛顿时空观的严重缺陷;而对黑体辐射能谱分布规律的研究及对热容量的研究,揭示了经典统计物理学理论的重大缺陷,发现了微观运动的新特性。1900年普朗克提出了能量量子化的假设,用这种假设成功地揭示了黑体辐射问题。与量子力学的有机结合使经典统计物理学发展成为量子统计物理学。二十世纪五十年代以后,非平衡态热力学和统计物理学得到迅速发展,其代表人物是比利时物理学家普里高金。 本段热力学 热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。 热学热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。 热力学三定律是热力学的基本理论。热力学第一定律反映了能量守恒和转换时应该遵从的关系,它引进了系统的态函数——内能。热力学第一定律也可以表述为:第一类永动机是不可能造成的。 热学中一个重要的基本现象是趋向平衡态,这是一个不可逆过程。例如使温度不同的两个物体接触,最后到达平衡态,两物体便有相同的温度。但其逆过程,即具有相同温度的两个物体,不会自行回到温度不同的状态。 这说明,不可逆过程的初态和终态间,存在着某种物理性质上的差异,终态比初态具有某种优势。1854年克劳修斯引进一个函数来描述这两个状态的差别,1865年他给此函数定名为熵。 1850年,克劳修斯在总结了这类现象后指出:不可能把热从低温物体传到高温物体而不引起其他变化,这就是热力学第二定律的克氏表述。几乎同时,开尔文以不同的方式表述了热力学第二定律的内容。 用熵的概念来表述热力学第二定律就是:在封闭系统中,热现象宏观过程总是向着熵增加的方向进行,当熵到达最大值时,系统到达平衡态。第二定律的数学表述是对过程方向性的简明表述。 热学 1912年能斯脱提出一个关于低温现象的定律:用任何方法都不能使系统到达绝对零度。此定律称为热力学第三定律。 热力学的这些基本定律是以大量实验事实为根据建立起来的,在此基础上,又引进了三个基本状态函数:温度、内能、熵,共同构成了一个完整的热力学理论体系。此后,为了在各种不同条件下讨论系统状态的热力学特性,又引进了一些辅助的状态函数,如焓、亥姆霍兹函数(自由能)、吉布斯函数等。这会带来运算上的方便,并增加对热力学状态某些特性的了解。 从热力学的基本定律出发,应用这些状态函数,利用数学推演得到系统平衡态各种特性的相互联系,是热力学方法的基本内容。 热力学理论是普遍性的理论,对一切物质都适用,这是它的优点,但它不能对某种特殊物质的具体性质作出推论。例如讨论理想气体时,需要给出理想气体的状态方程;讨论电磁物质时,需要补充电磁物质的极化强度和场强的关系等。这样才能从热力学的一般关系中,得出某种特定物质的具体知识。 热力学应用平衡态热力学的理论已很完善,并有广泛的应用。但在自然界中,处于非平衡态的热力学系统(物理的、化学的、生物的)和不可逆的热力学过程是大量存在的。因此,这方面的研究工作十分重要,并已取得一些重要的进展。 目前,研究非平衡态热力学的一种理论是在一定条件下,把非平衡态看成是数目众多的局域平衡态的组合,借助原有的平衡态的概念描述非平衡态的热力学系统。并且根据“流”和“力”的函数关系,将非平衡态热力学划分为近平衡区(线性区)和远离平衡区(非线性区)热力学。这种理论称为广义热力学,另一种研究非平衡态热力学的理论是理性热力学。它是以热力学第二定律为前提,从一些公理出发,在连续媒质力学中加进热力学概念而建立起来的理论。它对某些具体问题加以论证,在特殊的弹性物质的应用中取得了一定成果。 非平衡态热力学领域提供了对不可逆过程宏观描述的一般纲要。对非平衡态热力学或者说对不可逆过程热力学的研究,涉及广泛存在于自然界中的重要现象,是正在探讨的一个领域。如平衡态的热力学和统计力学的关系一样,从微观运动的角度研究非平衡态现象的理论是非平衡态统计力学。 本段第二定律 热力学第二定律主要内容 热传导的方向性 热传导的过程是有方向性的,这个过程可以向一个方向自发地进行,但是向相反的方向却不能自发地进行. 第二类永动机 只有单一的热源,它从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化.人们把这种想象中的热机称为第二类永动机.第二类永动机不可能制成,表示机械能和内能的转化过程具有方向性. 1885年,赫兹利用一个具有初级和次级两个绕组的振荡线圈进行实验,偶然发现:当初级线圈中输入一个脉冲电流时,次级绕组两端的狭缝中间便产生电火花,,赫兹立刻想到,这可能是一种电磁共振现象。既然初级线圈的振荡电流能够激起次级线圈的电火花,那么它就能在邻近介质中产生振荡的位移电流,这个位移电流又会反过来影响次级绕组的电火花发生的强弱变化。
跪求大学物理中赵凯华的《电磁学》pdf
大学物理赵凯华《电磁学》百度网盘最新全集下载:
***隐藏网址***
***隐藏网址***
?pwd=4hs9 提取码: 4hs9赵凯华《电磁学》,为了帮助参加研究生招生考试指定考研参考书目为赵凯华《电磁学》(第2版)的考生复习专业课。
有关磁学的问题(一定要精通电磁学)
1、在各向同性线性非铁磁介质中,介质磁化后,磁化强度矢量M和外磁场Bo的方向是处于同一直线上。这是由磁化强度的定义决定的。磁化强度是指介质内无限小体积内单位体积磁矩的大小。在磁场中,磁感应强度对磁矩有力矩。磁矩转向磁感应强度方向。有公式B(矢量)=μH(矢量),M(矢量)=XmH(矢量),μ=μ0(1+Xm),各向同性线性非铁磁介质中,Xm是常数,上述结论正确。而各项异性介质中,μ是张量,Xm显然也是张量,这种情况下,磁化强度矢量M和外磁场Bo的方向不一定处于同一直线上。非线性介质中,还有非线性项存在,情况更加复杂。2、均匀磁性介质是指此介质任意两点上的磁化性质完全相同。而均匀磁化是指介质中磁化强度矢量处处相等。
《大学物理学》 张三慧 我要电磁学的全部答案word版本
《张三慧《大学物理学》考点精讲 讲义.pdf》百度网盘资源免费下载
***隐藏网址***
***隐藏网址***
?pwd=gwbt 提取码: gwbt更多文章:
国内外送花禁忌,给外国人送花有什么讲究?送花是一门学问,看看什么情况需要送什么花,而什么花又不能送.
2024年7月9日 03:20
关于科普知识的资料(有关于“科普知识”的资料有哪些(适合用于做小报的))
2024年3月31日 12:10
送东阳马生序中宋濂是如何刻苦学习的?送东阳马生序中宋濂从几方面讲述自己的求学之难
2024年9月20日 13:40
一个员工该具备的素质_企业员工应具备的基本素质有哪些?人员素质是什么意思
2024年3月11日 20:40
青少年心理健康讲座(关注青少年心理健康知识讲座宣传标语【精】)
2024年6月23日 09:50
应当怎样选择社会调查研究课题(社会调查的选题可以从什么中寻找)
2024年8月3日 21:40
不想和你做朋友(喜欢我的人为什么只想和我做男女朋友,不想和我做朋友)
2024年9月1日 20:00