采油方法有哪些?采油设备有哪些

2024-07-13 14:50:28 :41

采油方法有哪些?采油设备有哪些

本文目录

采油方法有哪些

采油方法通常是指将流到井底的原油采到地面上所采用的方法,包括自喷采油法和人工举升法两大类。利用储层自身的能量使油喷到地面的方法称为自喷采油法;当油层能量低而不能自喷时,则需要一定的机械设备给井底的油流补充能量,从而将油举升到地面,这种采油方式称为人工举升或机械采油法。按照给井底油流补充能量的方式,人工举升方法还可以进一步细分,具体可参考图5.2。

采油方式的好坏直接影响着地下“黑金”开采的产量及效率。

图5.2 采油方式分类

采油设备有哪些

摘要:当下国内各大油田在原油采集时均使用的是全机械开采模式,主要的采集设备包括游梁式抽油机、皮带机、潜油电泵、螺杆泵等,采油设备的工作原理也分为有杆采油系统和无杠采油系统两种,无杠采油系统的原理是地面动力泵通过油管将动力液送到井下驱动油缸和换向阀,从而带动抽油泵抽油工作。接下来本文将简单介绍采油设备有哪些以及采油设备工作原理是什么,一起到文中来看看吧!一、采油设备有哪些我国目前已经成为世界能耗大国中的一员,国内能源缺口越来越严重,而石油企业本身虽然生产和采集能源,但也是最大的能源消耗者,尤其是其采集设备在运行时均需要耗费大量的能源,只有进一步完善节能降耗技术,不断革新原油采集的工艺,才能够稳定我国的能源消耗问题。其中采油机械主要分两大类:1、有杆采油系统的生产机械,包括游梁式抽油机,皮带式抽油机,链条式抽油机,异型抽油机等,有杆采油系统有两方面的缺点:(1)设备复杂,效率低,能耗高。(2)普遍存在偏磨现象严重,油井免修期短,造成井下作业费用高。2、无杆采油系统的生产机械,主要包括潜油电泵,水力活塞泵等,无杆采油系统也有两方面的缺点:(1)一是效率低,能耗高。(2)二是普适性差。二、采油设备工作原理是什么1、有杆采油系统的工作原理它的工作原理是:当活塞上行时,排出阀在油管内的液柱作用下而关闭,并排出相当于活塞冲程长度的一段液体。与此同时,栗筒内的液柱压力降低,在油管与套管环形空间的液柱压力作用下,吸人阀打开,井内液体进入泵内,占据活塞所让出的空间。当活塞下行时,泵筒内的液柱受压缩,压力增高,当此压力等于环形空间液柱压力时,吸入阀靠自身重量而关闭。在活塞继续下行中,泵内压力继续升高,当泵内的压力超过油管内液柱压力时,泵内液柱即顶开排出阀并转人油管内。2、无杆采油系统的工作原理井下部分是水利活塞泵的主要机组,它由油液动机、水力活塞泵和滑阀控制机构三个部分组成。地面动力泵通过油管将动力液送到井下驱动油缸和换向阀,从而带动抽油泵抽油工作。

油田采油分为哪三个阶段

从采油的阶段和技术手段上划分,石油开采分为三个阶段。即一次采油、二次采油、三次采油。

在石油界,通常把仅仅依靠岩石膨胀、边水驱动、重力、天然气膨胀等各种天然能量来采油的方法称为一次采油;把通过注气或注水提高油层压力的采油方法称为二次采油。

把通过注入化学剂改变张力、注入热流体改变黏度,用这种物理、化学方法来驱替油层中不连续的和难开采原油的方法称为三次采油。

一次采油——让油自己喷出来

在一次采油阶段,在地层里沉睡了亿万年的石油可以依靠天然能量摆脱覆盖在它们之上的重重障碍,通过油井流到地面。

这种能量正是来源于覆盖在它们之上的岩石对其所处的地层和地层当中的流体所施加的重压。在上覆地层的重压下,岩石和流体中集聚了大量的弹性能量。当油层通过油井与地面连通后,井口是低压而井底是高压。

在这个压差的作用下,上覆地层就像挤海绵一样,将石油从油层挤到油井中,并举升到地面。随着原油及天然气的不断产出,油层岩石及地层中流体的体积逐渐扩展,弹性能量也逐渐释放。

总有一天,当弹性能量不足以把流体举升上来时,地层中新的压力平衡慢慢建立起来,流体也不再流动,大量的石油会被滞留在地下。就像弹簧被压缩一样,开始弹力很强,随着弹簧体积扩展,弹力越来越弱,最终失去弹力。

它的优点是投资少、成本低、投产快,只要按照设计的生产井网钻井后,不需要增加另外的注入设备,只靠油层自身的能量就可将原油采出地面。缺点是天然能量作用的范围和时间有限,不能适应油田较高的采油速度及长期稳产的要求,最终采收率通常较低。

二次采油——用水把油顶出来

在二次采油阶段,人们通过向油层中注气或注水来提高油层压力,为地层中的岩石和流体补充弹性能量,使地层中岩石和流体新的压力平衡无法建立,地层流体可以始终流向油井,从而能够采出仅靠天然能量不能采出的石油。

但是,由于地层的非均质性,注入流体总是沿着阻力最小的途径流向油井,处于阻力相对较大的区域中的石油将不能被驱替出来。有的原油在地下就像沥青一样,根本无法在地层这种多孔介质中流动。因此,二次采油方法提高原油采收率的能力是有限的。

油田注水开发的原理就是通过打注水井向油层注入水,在整个油层内建立起水压驱动方式,恢复和保持油层压力,从而减少钻井口数,提高采油速度,缩短油田开发的年限,提高油田最终采收率。由于注水工艺容易掌握。

水源也比较容易得到,因此油田注水开发的方式迅速推广,成为一种应用最广泛的方法。注水开发从注水时间上大致可分为三种类型:超前注水、早期注水和晚期注水。

三次采油——靠科技把油洗出来

在三次采油阶段,人们通过采用各种物理、化学方法改变原油的黏度和对岩石的吸附性,可以增加原油的流动能力,进一步提高原油采收率。三次采油的主要方法有聚合物驱、化学驱、气驱、热力采油、微生物驱等。

聚合物驱是指在注入水中加入水溶性的高相对分子质量的聚合物,增加水相黏度和降低水相渗透率,改善油水黏度比,从而扩大体积波及系数,达到提高原油采收率的方法。

扩展资料:

油田开发阶段划分应当遵循如下原则:

①正确展不各开发阶段的基本地质开发特征;

②便于暴露各开发阶段中的主要矛盾和带倾向性的问题。

以上两条原则也是划分开发阶段的目的所在。对于一个具体油藏,不同的人或不同的认识,可以做出不同的开发阶段划分,但任何好的开发阶段划分应当能够满足上述原则;相反,不能满足上述原则的开发阶段划分,即使源于任何经典任何理论,也只能归于“不足取”之列。

划分开发阶段是油藏开发过程解剖和油藏开发诊断治理研究的基础,准确的开发阶段划分对油藏既往开发史的解剖研究具十分重要的意义,应该重视这项工作。 

参考资料来源:百度百科-采油方式

什么是人工举升采油

随着油田的不断开发,地层能量逐渐消耗,油井最终会停止自喷。由于地层自身的地质特点,有的油井一开始就不能自喷。对于不能自喷的油井,必须用人工举升的方法给油流补充能量,将井底的原油采出来。目前,利用人工举升将原油从井底举升到地面的方法可分为气举法和抽油法两大类。

气举法 气举法是指地层尚有一定能量,能够把油气驱动到井底,但地层供给的能量不足以把原油从井底举升到地面上时,需要人为地把气体注入井底,将原油举升出地面的人工举升采油方式。它的举升原理和自喷井相似,是通过向油套环空注入高压气体,并通过油管上的多组气举阀让一部分气体迸入油管,降低井筒中液体的密度,在井底流动压力的作用下,将液体排出井口。同时,注入的高压气体在井筒上升的过程中,体积逐渐增大,气体的膨胀功对液体也产生携带作用。气举适用于油井供液能力较强、地层渗透率高的油井。海上采油、深井、斜井、含砂井、含气井和含有腐蚀性成分而不宜用其他人工举升采油方式开采的油井都可采用气举采油。气举采油的优点是井口、井下设备比较简单,管理调节比较方便;缺点是地面设备系统复杂、投资大,而且气体能量的利用率较低。

连续气举装置示意图抽油法 抽油法主要是用深井泵采油,可分为有杆泵采油和无杆泵采油两大类。

(1)有杆泵采油:有杆泵采油是指抽油机通过下入井中的抽油杆带动井下抽油泵的活塞做上下往复运动,把油抽汲到地面的人工举升采油方法。这种方法用量最多,大约占世界人工举升采油总井数的80%~90%。

(2)无杆泵采油:无杆泵采油是指不用抽油杆传递动力,而是用电动机、高压液体等驱动井下泵,即用特殊的抽油泵(如电动潜油离心泵、螺杆泵、射流泵、水力活塞泵)开采原油,可分为电动潜油泵采油、螺杆泵采油、射流泵采油、水力活塞泵采油。其中,电动潜油泵采油应用广泛,效率最高,简称电潜泵采油。基本原理如下:电潜泵采油系统,主要由井下电动机、离心泵、分离器、保护器和井下电缆等组成。电动机装在井下,直接带动离心泵。潜油电动机的工作原理和地面电动机一样,但它的外形却和地面电动机不同,因为它要下到井下,在具有一定压力和温度的原油里工作,所以要把它制造得细而长,并有良好的密封性。潜油离心泵和普通农用抽水机一样,是通过叶轮的高速旋转增加液体的能量,不过抽水机旋转叶轮级数少,而潜油离心泵的叶轮是多级的,且外形也制造成细长杆状,以利于下入井中。

电潜泵采油示意图电动机下到几百米甚至上千米的油井里,从井口下一根特殊电缆接在潜油电动机上。当电缆供电后,潜油电动机旋转带动潜油离心泵的多级叶轮转动。每一级叶轮都给井底原油增加一定的能量,就如同抽水机给水增加压力一样。当原油经过多级叶轮转动后,压力会升得很高,于是,油就从井底举到井口。潜油电动机直接带动潜油离心泵,省去了不必要的动力消耗。因此,它的效率比抽油机高得多,能节约用电。它可用于很深的高产井,也便于实现油田生产自动化。

抽油采油方法除了电潜泵采油之外还有螺杆泵采油、射流泵采油、水力活塞泵采油等人工举升采油方法。

6.抽油机是如何把原油抽吸到地面上来的进入油田放眼望去,无数台抽油机不紧不慢地上下运动,像是无数高大的毛驴在十分吃力地负重前行,“驴头”不停地上下摆动,类似“作揖磕头”,于是人们给它起了个俗名叫“磕头机”。在国内外油田中,有80%的非自喷井都是用抽油机来采油的。其实,仅仅有抽油机并不能采油,还必须配备井下抽油泵及连接抽油泵和抽油机的抽油杆。磕头机、抽油泵、抽油杆组合起来叫有杆泵抽油系统,这是最传统、最广泛的人工举升采油方法。抽油机主要由底盘、减速箱、曲柄、平衡块、连杆、横梁、支架、驴头、悬绳器及刹车装置、电动机、电路控制装置组成。其工作原理是:由电机供给动力,经传动皮带将电机的高速旋转运动传递给减速器,经两级减速后变为低速转动,并由四连杆机构将旋转运动变为驴头悬点的上下直线往复运动。抽油杆一头用钢丝绳悬挂在驴头悬点上,一头与井下的抽油泵连接,带动下入井中的抽油泵工作,将井液抽汲到地面。

抽油井示意图抽油杆是两端带螺纹的10米左右长的钢杆,每根都用螺纹连接起来,最上端的一根连接抽油机,下端的一根连接抽油泵活塞并将动力传递给抽油泵。

抽油泵工作原理示意图3417抽油泵的原理和水井的手压式抽水泵相似,由工作筒和活塞组成。工作筒接在油管下部,工作筒下部有固定阀门,固定阀门下到井筒液面以下。活塞是空心的,上面有游动阀,它是用抽油杆下到工作筒里去的。抽油杆带动活塞上下运动,当活塞向上运动时,游动阀在液体压力下关闭,这时活塞上面的原油就从工作筒内提升到上面的油管里去,再流到地面管道中。同时,工作筒内下腔室的压力降低,油管外的原油就依靠地层压力顶开固定阀流入工作筒内。同样,当活塞向下运动时,工作筒内下腔室压力升高,固定阀门关闭,工作筒内的原油就顶开游动阀排到活塞上面去,此时,油管外的原油不能进入工作筒内。这样,深井泵活塞上下往复运动,井里的原油就被源源不断地抽到油管里去,并不断地从油管排到地面。

什么是自喷采油

油田开发过程中,油井一般都会经历自喷采油阶段。是利用地层自身的能量将原油举升到井口,再经地面管线流到计量站。自喷采油设备简单、管理方便、产量高、不需要人工补充能量,可以节省大量的动力设备和维修管理费用,是最简单、经济、高效的采油方法。

为了使油井以合理的产量稳定生产,延长油井的自喷期,油井生产系统的各个流动过程要互相衔接、协调工作。油井的生产一般包含三个流动过程:原油从油层到井底的渗流;沿井筒从井底到井口的垂直或倾斜管流;从井口到分离器的地面水平或倾斜管流。大多数自喷井,原油还要通过井口油嘴的节流。所以,自喷井一般包括这四个流动过程。本节讨论油井流入动态、气液混合物在垂直井筒及油嘴中的流动规律;介绍自喷井的井场设备;简述自喷井系统的协调原理和节点分析方法。

一、油井流入动态原油通过多孔介质从油层到井底的渗流是油井生产系统的第一个流动过程。油井产量与井底流动压力的关系称为油井流入动态,相应曲线即为流入动态曲线(Inflow Performance Relationship Curve),简称IPR曲线。就单井而言,IPR曲线反映了油藏的供油能力和工作特性,是确定油井工作方式的依据,也是分析油井动态的基础。典型的流入动态曲线如图6-1所示。由图6-1可以看出:IPR曲线的形状与油藏的驱动类型有关。

图 6-1 典型的油井IPR曲线

1.采油指数井底流动压力高于原油泡点压力时,油藏中流体的流动为单相渗流,油层流体的物性基本上不随压力变化,利用第四章的定压边界平面径向流产量公式稍加改变可得:

式中 PI——采油指数,m3/(Pa·s);Q——油井产量(地面),m3/s;

——地层平均压力,Pa;pwf——井底流动压力,Pa;Ko——油层的有效渗透率,m2;h——油层的有效厚度,m;μo——地层油的粘度,Pa·s;re——油井供油半径,m;rw——井底半径,m;S——表皮因子,与油井的完善程度有关。

r。有了采油指数,就可以应用(6-1)式预测不同流压下的产量,研究油层参数。采油工程的一项重要任务就是在经济可行的条件下,尽力提高采油指数。酸化可以解除井底附近的表皮伤害;水力压裂能够获得负表皮系数。对于稠油油藏,注蒸汽降低原油粘度也能提高采油指数。当油井含水时,单位生产压差下的产液量即为采液指数。比采油指数是指单位油层厚度上的采油指数,即每米采油指数,它能更科学地描述油层的生产能力。

2.油气两相渗流的流入动态单相渗流时,IPR曲线为直线。当地层压力低于饱和压力时,气、液两相共存于油藏中,油藏的驱动方式为溶解气驱,需根据油气两相渗流的基本规律来研究油井的流入动态。

由于原油粘度μo、体积系数Bo及有效渗透率Ko与压力、生产气油比等很多因素有关,定量关系十分复杂。在油井动态分析和预测中,一般采用简便实用的近似方法来绘制溶解气驱油藏的IPR曲线。

1)无因次IPR曲线

r,横坐标为相应流压下的产量与最大产量之比qo/qomax时,得到了一簇曲率不同、形状类似的无因次IPR曲线。图6-2所示为所得曲线簇的“平均”曲线,代表接近完善井的情况。用公式描述该曲线就得到Vogel方程:

图6-2 溶解气驱油藏无因次IPR曲线

式中 qo——油井产量,m3/s;qomax——井底油压降至大气压时油井最大产量,m3/s。

此方程不涉及油藏及流体的物性参数。已知目前平均地层压力和一个稳定的测试点,或由两个稳定的测试点,便可绘出油井的IPR曲线,预测不同流压下的油井产量,十分简便。

2)非完善井的Vogel方程为防止底水锥进,未钻穿整个油层的井属于打开程度不完善。射孔完井为打开性质不完善。在钻井或修井过程中,油层受到污染或进行过酸化、压裂等措施的油井,井壁附近的渗透率会发生变化,改变油井的完善性,从而增加或降低井底附近消耗的压降,影响油井的流入动态。

油井完善程度可用流动效率FE(Flowing Efficiency)来表示。流动效率定义为同一产量下理想完善井的生产压差与实际生产压差之比,即:

——理想完善井的井底流压;pwf——实际非完善井的井底流压。

对于拟稳态流动,流动效率与表皮系数的关系可近似表示为:

代替pwf,就可以对0.5≤FE≤1.5范围内的非完善井进行预测。

二、垂直管流气、液两相管流是指游离气体和液体在管中同时流动。地层流体通过井中的油管、地面油嘴和出油管线的流动是油井生产系统中基本的流动过程。在整个油井生产系统中,大部分能量消耗在克服重力和摩阻上。大多数油井为油、气、水多相流动,研究其流动规律对于正确分析油井生产动态、合理设计举升工艺具有重要意义。研究的核心问题是压力损失及其影响因素。一般把油、水两种流体视为液相,着重考虑气、液两相间的作用。

1.气、液两相管流特性参数气、液两相流持液率HL(Holdup Liquid)是描述两相流特性的重要参数,表示单位管段容积中液相所占的份额,即过流段面上液相面积AL与总过流面积A之比。持气率HG(Holdup Gas)则是气相所占面积AG与总过流面积A之比。由于管段内完全充满气体和液体,所以:HG+HL=1HL=0表示单相气流;HL=1表示单相液流;而0《HL《1则为气液两相流动。

气、液混合物密度是两相流计算的重要参数,它与持液率密切相关:

式中,ρ为流体密度,下标G、L、m分别表示气相、液相和混合物。

在气、液两相上升管流中,由于气相比液相轻,气相的运动速度会高于液相。由于两相间物性差异所引起的气相超越液相流动的现象称为滑脱现象(Slipage Effect)。滑脱速度vS是描述两相流特性的主要参数,等于气相真实速度vG与液相真实速度vL之差。由于真实速度很难测定,因此引入气相表观速度vSG和液相表观速度vSL。气相表观速度等于气体体积流量与管子截面积之比;液相表观速度等于液体体积流量与管子截面积之比。即假想管内截面A只被两相混合物中的某一相单独占据。

单相流中只有一种流体,其表观速度即为真实速度;两相流的气相或液相表观速度必然小于其真实速度。混合物速度vm表示混合物总体积流量与流通截面积之比。根据表观速度的定义可知混合物速度等于气相表观速度与液相表观速度之和。混合物速度和表观速度是实际上并不存在的理想速度,使用它们是为了简化计算。根据真实速度、表观速度和持液率的关系,可求得滑脱速度:

2.流动状态原油从井底流至井口,是油井生产的第二个流动过程。气、液在垂直油管中的分布形态称为两相流的流动型态(Flow Patterns),简称流态或流型。在各种流态下,气液混合物的流动规律不同。按流动结构流态可分为以下几种,如图6-3所示。

图6-3 气液两相垂直管流典型流态

(1)泡流(Bubble Flow):压力降到原油饱和压力时,溶解气开始分离出来。小气泡分散于连续的液相中,含气量较低,混合物的平均流速较低。气泡的上升速度大于液体流速,滑脱现象比较严重。气体对混合物密度影响大,对摩阻的影响小。

(2)段塞流(Slug Flow):随着混合物沿井筒向上流动,压力逐渐降低,气体不断增加和膨胀。小气泡相互碰撞、聚合而形成的大气泡几乎占据了管子截面,形成一段液、一段气的流动结构。夹杂着小气泡的液体段塞仍为连续相。气体段塞是分散相,其内携带着液滴。形似炮弹的大气泡就像一个个破漏的活塞举升着液体。气相、液相间的相对运动小于泡流,滑脱损失小。段塞流是两相流中举升效率最高的流型。

(3)过渡流(Transition Flow):过渡流是液相从连续相到分散相、气相从分散相到连续相的过渡状态。气体在向上流动的过程中连续举升液体,部分下落、聚集的液体重新被气体举升。这种混杂的、振荡的、界限不清的流体运动便是过渡流的特征,故过渡流也称为搅动流。

(4)环雾流(Annular-mist Flow):当气量更大时,气泡汇聚成气柱在油管中心流动,液相被挤到周围,成为沿管壁流动的液环。伴随着气体的流出,夹带其中的小液滴也流出井口。

三、嘴流动态大部分自喷井和气举井都需要在井口安装节流装置,以便控制井口油压和注气压力,从而限制和稳定油井的产量或注气量,防止底水锥进和地层出砂。

节流部件种类很多,包括井口固定式油嘴、针型阀,井下油嘴、安全阀及气举阀等。当流体通过这些流通截面突缩的部件时,其流动规律可概括为嘴流。节流压力损失部分转化为速度,部分消耗于不可逆的涡流损失。

1.单相气体嘴流气体通过圆形孔眼的流动如图6-4所示。若上游压力p1一定,气体流量将随下游压力p2的降低而增大。当p2达到某定值时,流量达到最大,称为临界流量。进一步降低p2,流量将不再增加,此时气体的速度达到压力波在流体介质中的传播速度(即声速),这时气体的流动称为临界流动(Choke Critical Flow)。在临界流动状态下,油嘴下游的压力变化不影响气体的流量。气体的流量与油嘴上、下游压力比的关系如图6-5所示。

图 6-4 嘴流示意图

图6-5 不同嘴径的嘴流特性天然气的临界压力比(p2/p1)c为0.546。当油嘴下游与上游的压力比小于该临界压力比时,就达到了临界流动状态,否则为亚临界流动状态。也就是说,当油压p1达到地面回压p2的两倍时,气体通过油嘴的流动就可达到临界流动状态。

2.气、液两相嘴流由于气、液两相嘴流比单相嘴流复杂得多,一般用经验公式描述。在临界流动条件下,气液比、油嘴直径一定时,油嘴流量取决于油压。流量与油压的关系可描述成过原点的直线。收集与分析油嘴的相关资料,可得出适合本油区实际情况的计算公式。

当油气以临界流量通过油嘴生产时,嘴流动态曲线只受油嘴尺寸控制,下游压力的变化不会造成油井产量的波动,排除了自喷井的第四个流动过程(井口到分离器的地面流动)对油井的干扰。因此,油嘴的作用有两个:一是控制油井产量;二是将地面管流分隔开来,防止其压力波动影响油井的稳定生产。

四、自喷井设备及管理1.自喷井设备为使自喷井保持正常、稳定的生产,必须在井口安装控制油气产量的部件及油气集输设备。最简单的井口流程是采油树(Christmas Tree)和油气输送管线及设备。

1)自喷井的井口装置自喷井的井口装置一般由套管头、油管头和采油树组成,如图6-6所示。套管头在整个井口装置的下部,用于连接井内各层套管,密封套管间的环形空间。油管头装在套管头的上面,它包括油管悬挂器和套管四通。油管悬挂器用于悬挂井内油管柱,密封油管与套管的环形空间。套管四通用于正、反循环压井,观察套管压力以及通过油、套环形空间进行各项作业。

图6-6 井口装置

油管是下入套管中的无缝钢管,是地下原油上升到地面的通道。它比套管采油利用地层能量更合理,利于延长油井的自喷期。

采油树引导从井中喷出的油气进入出油管线,控制和调节油井的生产。因其树状的外形得名。采油树通常由总闸门、生产闸门、清蜡闸门、压力表、油嘴等部件组成。

总闸门装在油管头的上面,是控制油气流入采油树的主要通道。正常生产时处于常开状态,只有在长期停产或其他特殊情况下才关闭。

生产闸门安装在油管四通或三通的侧面,用于控制油气流向出油管线。正常生产时处于常开状态,在检查、更换油嘴或油井停产时才关闭。

清蜡闸门装在采油树的上端,其上可连接清蜡防喷管。正常生产时关闭,清蜡时打开。

油嘴是控制和调整自喷井合理工作制度的主要装置。一般安装在采油树一侧的油嘴套内,也可装在井下或计量站内的分离器之前。油嘴是中心带孔、外面有螺纹的钢材或陶瓷圆柱体。油嘴孔眼直径根据油井产量选用,一般为1.5~20mm。

采油树型号很多,需根据油井的产量和压力选用。

2)计量分离器计量分离器是分离和计量油气的装置,能控制井口出油管线的回压,也可憋压后利用天然气清扫管线。

当高压油气混合物沿切线方向进入分离器上部时,因容积突然增大,压力降低,油中的溶解气会陆续分离出来,并借助于密度差形成重力分异。油受离心力的作用沿分离器内壁作回旋运动时,低密度的气体在中心向上旋转流动,经两层分离伞除去夹带的油滴后,从顶部出气口排出。高密度的油被甩向筒壁,沿内壁旋流向下。散油帽使液流分散开来并降低其流速,以利于天然气的进一步分离。分离出的油和气经计量后,重新混合送入集输干线或转油站。油中所含的水、砂等污物,因密度大于油而沉降到底部,可定期清除。

矿场上常用的分离器有φ800mm、φ600mm、φ400mm(φ表示分离器直径)。

3)水套加热炉水套加热炉是井口保温及原油加热设备,有水管式和火管式,油田上常用火管式。主要配件包括水套、火管、火嘴、加热油盘管、加水包、安全阀及气压表等。正常工作时,水套内的水占其容积的1/2~2/3。天然气从火嘴喷入、在火管内燃烧。烧热的水及蒸汽加热盘管里的原油使其降粘。所供热量还可沿管线循环加热井口设备和值班室。

4)封隔器封隔器是实施采油工艺技术的重要井下工具,作用是将油层分隔开。配合其他井下工具可以实现分层采油、分层注水、分层测试、分层改造及分层管理等。封隔器的种类很多,按工作原理目前划分为8种类型。

5)安全阀安全阀用于预防分离器、水套加热炉等压力过高而发生跑油或爆炸事故。其种类很多,矿场常用单弹簧微启式安全阀。当设备内的压力大于安全值时,气体压缩弹簧,推动阀球离开阀座,排出气体,从而降低压力,同时发出尖叫声,便于值班员及时发现和处理。

2.自喷井的管理自喷井管理包括管好采油压差、取全取准资料、保证油井正常生产。管好采油压差才能控制地层中油、水的流动和注采平衡,挖掘生产潜力。合理工作制度是指在目前的静压下,油井以多大的产量进行生产。这要根据开发条件确定。

正常情况下,采油压差是通过改换油嘴的大小来控制的。生产过程中,油井结蜡、砂堵、设备故障等,会导致油井不能以设定的压差进行生产,应该及时解除。

油井生产资料是油井分析、管理和判断静态资料可靠性的依据,要取全取准。

自喷井的日常管理包括:录取油井的油压、套压等动态资料;计量油气产量;井口取样;保证清蜡、测试等日常生产管理及井下作业的顺利进行。

1)量油量油是定时计量每口井产出的原油,是油井管理中的重要环节。通过油井的日产油量了解生产情况,取得第一手动态资料,为油井、油田的动态分析提供可靠的依据。

量油的方法很多,常用玻璃管量油和翻斗量油。玻璃管量油装置是在分离器侧面安装一支与分离器连通的高压玻璃管。根据连通器原理,由玻璃管中水柱的上升高度,可算出分离器中油面的上升高度。记录水柱上升一定高度所需的时间,结合分离器容积,便可算出原油的日产量。玻璃管自动量油是由电极控制、由仪表完成记录的。

自动翻斗量油装置中,油气分离缓冲装置使原油均匀平稳地流入翻斗,以保证计量准确。翻斗由两个并联的三角形斗构成。利用杠杆平衡原理,一斗装到预定质量便会翻转排油,同时另—斗开始进油。周而复始,连续计量。计量讯号装置记录翻斗翻转次数,根据翻斗翻转时的盛油量便可计算出日产油量。装置内设有液面控制器使液面保持稳定。

2)测气测气可掌握油井产气量和气油比。放空测气是在测气管线上安装挡板。气体通过挡板上的小孔时,由于节流作用挡板前后产生压差。测出此压差及挡板前的绝对静压,就可用公式算出产气量。该法适用于气量不大、管线压力低的井。密闭测气的基本原理与放空测气相同,但测试过的气体返回集输管线。该法适用于气量大、管线压力高的井。波纹管自动测气中,挡板前后的压差使波纹管发生形变,带动了差动线圈内的铁芯运动,使差动线圈内产生感应电流。由电流与压差的关系,可推算出产气量。

3)清蜡和防蜡石蜡溶解在地下原油中。当原油沿井筒上升到一定位置,温度、压力降低,蜡会析出,并集结在油管壁上,使流动截面变小甚至堵塞。清蜡就是清除这种堵塞,疏通管道。

机械清蜡是用清蜡绞车带动刮蜡片反复刮削油管壁,并靠油流把刮下来的蜡带到地面。清蜡绞车用于缠绕钢丝,使刮蜡片上、下运动,有手摇式和电动式,常用电动式。

热油循环清蜡是让部分脱气原油经水套炉加热后从套管重新注入井内。热油因密度大于井中的混气油而不断下沉,并通过循环阀或油管鞋进入油管,与井内的原油混合,加热使管壁上的蜡熔化,从而达到清蜡的目的。

玻璃油管防蜡是在油井结蜡井段下入玻璃油管。玻璃表面光滑,具有亲水憎油性,能防止蜡的结晶颗粒沉积在上面,起到防蜡的作用。

用化学剂对油井进行清蜡和防蜡也是目前应用较广泛的方法。涂料油管防蜡是在普通油管的内壁附上一层化学涂料,改变油管的内表面性质,使蜡不易沉积在内壁,因此可防止油井结蜡。

3.自喷井的分层开采井筒内没有任何封隔器和配产器,只有油管的采油称为笼统采油。对于多油层油井,只用井口油嘴控制全井,难以做到合理生产,而且无法计量各层的产量。

为了缓和层间矛盾,防止层间干扰,调整高、中、低渗透层的采油速度,充分发挥中、低渗透层的生产能力,就需进行分层采油。在井内下封隔器、配产器进行分层配产,使各小层能在合理压差下生产,可提高采油速度和采收率,从而实现油田的长期高产、稳产。

分层开采包括单管分采与多管分采两种井下管柱结构。单管分采只在井内下一套油管柱,用单管多级封隔器将各个油层分隔开来。同时在油管上各油层的对应位置安装配产器,用配产器内的油嘴控制各油层的产量。多管分采是在一口井里下入两套以上的油管柱,用封隔器将各个油层分隔开来,通过各自的管柱和井口油嘴实现对每层的控制。

五、自喷井的协调生产油井稳定生产时,整个流动系统必然满足质量守恒和能量守恒,也就是说,自喷井的四个流动过程必须相互衔接、相互协调。

1.油井生产系统油井生产系统是指从油层供给边界到地面油气分离器这个统一的水动力学系统。除油层外,各部分都是人工建造的举升系统,如图6-7所示。油嘴到分离器之间为地面集油管线。井下油嘴和安全阀都装在油管柱上。

图 6-7 自喷井生产系统

1—分离器;2—油嘴;3—井口;4—安全阀;5—井下油嘴;6—井底;7—完井段;8—油层非自喷井的举升管柱还包括深井泵、气举阀等人工举升装置。油井生产系统的总压降为油层、完井段、举升管柱、油嘴以及地面管线的压降之和。不同油田的地层特性、完井方式、举升方法及地面集输工艺差异较大,油井生产系统互不相同。预测系统各组成部分的压力损失是油井分析的核心内容。

2.节点系统分析节点系统分析(Nodal Systems Analysis)的对象是油井生产系统,基本思想是用节点把油井生产系统隔离成相对独立的子系统。以压力和流量的变化关系为线索,把各流动过程有序地联系起来。确定各因素对系统的影响,寻求优化油井生产系统的途径。

节点(Node)即位置。对自喷井系统,至少可以确定如图6-7中所示的8个节点。其他举升系统还会有不同的节点。普通节点不产生与流量有关的压降,一般指两个不同流动过程的衔接点。油嘴及井下安全阀则属于函数节点(Functional Node),因为通过它们会产生一定压降,且压降的大小为流量的函数,故而得名。

应用时,通常要选择一个节点将整个系统划分为流入和流出两个部分。这个使问题获得解决的节点称为求解节点(Solution Node)。分析结果与求解点的位置无关。通常选靠近分析对象的节点作为解节点。灵活的节点位置有利于分析不同因素对产量的影响。

3.井的协调生产常以井底为求解点将油井生产系统隔离成两部分。流入部分即为油层渗流,用流入动态IPR曲线来描述,反映油层到解节点的供液能力;解节点下游压力与产量的关系则构成流出曲线,反映从解节点到分离器的排液能力。流入、流出曲线的交点对应给定条件下油井生产系统的产量及其井底流压。解节点的上、下游能够协调工作,因此该交点称为油井生产协调点。对应的产量就是油井的自喷产量,如图6-8(a)所示。

图 6-8 井底为求解点选取井底为求解点,可预测地层压力降低后,井底压力及其产量的变化。当油层压力降到一定程度时流入、流出两条曲线无交点,如图6-8(b)所示。表明在给定条件下,油层的供液能力小于油井的排液能力,不能协调生产,油井停喷。因此,可预测地层的停喷压力。欲使油井以产量q生产,需要进行机械采油。两曲线间的压差Δp就是必须人工补充的能量。

图6-8(c)中的两条曲线存在两个交点。理论分析和生产实践都能证明:较低产量的交点不稳定。压力波动会使油井停喷或者移向右边的交点A,此点才是稳定的协调工作点。

r-pwf表示油层渗流压降,pwf-pwh表示井筒的举升压降。图6-10分别绘制了不同直径油嘴的嘴流曲线,它们与油管工作曲线B的交点就是各油嘴的协调点。由图可确定指定产量所需的油嘴直径。运用协调方法还可以进行参数的敏感性分析,选择最佳油管尺寸,实现油井系统的优化生产。

图 6-9 自喷井流动过程的协调关系

图 6-10 不同油嘴直径的油井产量

石油是怎么采集到地面上来的

很早很早以前,人们用最简单的提捞方式开采原油,就像用吊桶在水井中提水一样,用绞车把原油从油井中提取上来。但这种方法只适用于油层非常浅、压力很小、产量很低的油井。如1907年中国延长油矿的延1井,井深81米,日产油1~1.5吨。1911年打的延2井,井深157米,日产油100千克。当时都是用转盘绞车把原油从油井中提捞上来的。

随着石油工业的发展,越来越多产量高、油层埋藏很深的油田被发现,原来那套人工提捞的方法无法在这些油井上使用,所以逐渐被淘汰,自喷采油和各种人工举升采油的方法应运而生。

一口油井用钻井的方法钻孔、下入钢管连通到油层后,原油就会像喷泉那样沿着油井的钢管自动向地面喷射出来。油层内的压力越大,喷出来的油就越快、越多。这种靠油层自身的能量将原油举升到地面的能力称为自喷,用这种办法采油称为自喷采油,它常发生在油井开发的初期。

那么油井为什么会自喷呢?石油和天然气深埋于地下封闭的岩石构造中,在上覆地层的重压下,它们与岩石一起受到压缩,从而集聚了大量的弹性能量,形成高温高压区。当油层通过油井与地面连通后,在弹性能量的驱动下,石油、天然气必然向处于低压区的井筒和井口流动。这就像一个充足气的汽车轮胎一样,当拔掉气门芯后,被压缩的空气将喷射而出。油层与油井的沟通一般情况下靠射孔完成。射孔是用特殊的枪和子弹把套管、水泥环、油层射开。一旦射孔完成,就像拔掉了封闭油层的气门芯,油气将通过油井喷射到地面。

自喷井的产量一般来说都是比较高的。例如:中东地区有些油井每口油井日产油量可高达1~2万吨。中国华北油田开发初期,很多油井日产千吨以上,大庆油田的高产井日产200~300吨。据统计,目前世界上约有50%~60%的原油都是靠自喷方法开采出来的,特别是在中东地区,大多数油井有旺盛的自喷能力。由于这种方法不需要复杂昂贵的设备,油井管理比较方便,是一种高效益的采油方法。所以,在油田开发过程中,人们都设法尽可能地保持油井长期自喷。到了开发的中后期,油层的压力会逐渐减小,不足以将地层内的原油驱替到井底并举升到地面,这时就需要给油层补充能量,如注入水或注入天然气等,增加油层的压力,以延长油井的自喷期。

自喷井示意图当通过注水、注气仍不能满足油井的自喷条件时,人们将采用特殊的机械装置将原油从井底抽吸出来,这就是人工举升采油方法。

石油是怎样采出来的

石油开采方法:1、很早很早以前,人们用最简单的提捞方式开采石油,就像用吊桶在水井中提水一样,用绞车把石油从油井中提取上来。2、随着石油工业的发展,越来越多产量高、油层埋藏很深的油田被发现,原来那套人工提捞的方法无法在这些油井上使用,所以逐渐被淘汰,自喷采油和各种人工举升采油的方法应运而生。3、随着油田的不断开发,地层能量逐渐消耗,油井最终会停止自喷。由于地层的地质特点 ,有的油井一开始就不能自喷。对于上述不能自喷的油井,必须用人工举升的方法给油流补充能量,将井底的石油采出来。利用人工举升将石油从井底举升到地面的方法可分为气举法和抽油法两大类。温馨提示:以上内容仅供参考。应答时间:2022-01-07,最新业务变化请以平安银行官网公布为准。

油井采油技术是什么

油井试油并确认具有工业开采价值后,如何最大限度地将地下原油开采到地面上来,实现合理、高产、稳产,选择合适的采油工艺方法和方式十分重要。目前,常用的采油方法有自喷采油和机械采油(见图5-1)。

图5-1 采油方法分类

一、自喷采油

依靠油层自身能量,将石油从油层驱入井底,并由井底举升到地面,这样的生产方式称自喷采油。依靠自喷方法生产的油井称为自喷井。自喷井地面设备简单、操作方便,产量较高,采油速度快,经济效益好。

(一)自喷井采油原理

1.原理油井之所以能够自喷是由于地层能量充足。地层能量的高低就反映在油层压力的高低。当地层打开之后,原油在较高的地层压力作用下,从地层深部向井底流动,克服了地层的渗滤阻力,剩余后的压力是井底压力。原油在井底压力作用下,沿着井筒从井底流到井口,同时溶解在原油中的天然气开始分离出来,气体也会成为举升原油的能量。

2.自喷井的四种流动过程

自喷油流从油层流到地面转油站可以分为四个基本流动过程——地层渗流、井筒多相管流、嘴流、水平管流,如图5-2所示。

(1)地层渗流:从油层流入井底,流体是在多孔介质中渗流,故称渗流。如果井底压力大于饱和压力,为单相渗流;如果井底压力小于饱和压力,为多相渗流。在渗流过程中,压力损失约占总压降的10%~15%。

(2)井筒多相管流:即垂直管流,从井底到井口,流体在油管中上升,一般在油管某断面处压力已低于饱和压力,故属于油、气或油、气、水多相流。垂直管流压力损失最大,占总压降的30%~80%。

(3)嘴流:通过油嘴的流体称为嘴流。嘴流流速较高,其压力损失占总压降的5%~30%。

(4)水平管流:流体进入出油管线后,沿地面管线流动,属多相水平管流。水平管流压力损失一般占总压降的5%~10%。

图5-2 自喷井的四种流动过程

1—地层渗流;2—井筒多相管流;3—嘴流;4—水平管流

四个流动过程之间既相互联系又相互制约,同处于一个动力系统。从油层流到井底的剩余压力称井底压力(井底流动压力)。对某一油层来说,在一定的开采阶段,油层压力稳定于某一数值不变,这时井底压力变大,油井的产出量就会减少;井底压力变小,则油井产量就会增加。可见,在油层渗流阶段,井底压力是阻力,而对垂直管流阶段,井底压力是把油气举出地面的动力。把油气推举到井口后剩余的压力称为井口油管压力。井口油管压力对油气在井内垂直管流来说是一个阻力,而对嘴流来说又是动力。

3.垂直管流中的能量来源与消耗

由于压力损失主要消耗在垂直管流中,下面重点介绍垂直管流。

1)单相垂直管流

当油井的井口压力大于原油的饱和压力时,井中为单相原油。流出井口后压力低于饱和压力时,天然气才从原油中分离出来,这样的油井属于单相垂直管流。

单相垂直管流的能量来源是井底流动压力。能量主要消耗在克服相当于井深的液柱压力,及液体从井底流到井口过程中垂直管壁间的摩擦阻力。所以,单相垂直管流中,能量的供给与消耗关系可用下列压力平衡式表示:

pf=pH+pfr+pwh

式中 pf——井底流动压力;

pH——液柱压力;

pfr——摩擦阻力;

pwh——井口压力。

2)多相垂直管流

当井底流动压力低于饱和压力时,则油气一起进入井底,整个油管为油气两相。当井底流动压力高于饱和压力,但井口压力低于饱和压力时,则油中溶解的天然气在井筒中某一高度上,即饱和压力点的地方开始分离出来,井中存在两个相区,下面是单相区,上面是两相区。在两相区,气体从油中分离出来并膨胀,不断释放出气体弹性膨胀能量,参与举升。因此,多相垂直管流中能量的来源,一是进入井底的液气所具有的压能(即流压);二是随同油流进入井底的自由气及举升过程中从油中分离出来的天然气所表现的气体膨胀能。气体的膨胀能是通过两种方式来利用的:一种是气体作用于液体上,垂直推举液体上升;另一种是靠气体与液体之间的摩擦作用,携带液体上升。

(二)自喷井采油设备

自喷采油设备包括井口设备和地面流程设备。

1.井口设备

自喷井井口装置从下到上依次是套管头、油管头和采油树三部分,如图5-3所示。自喷井的井口设备是其他各类采油井的基础设备,其他采油方式的井口装置都是以此为基础。

图5-3 自喷井井口结构图

1—清蜡闸门;2—生产闸门;3—油管头四通;4—总闸门;5—套管四通;6—套管闸门;7—回压闸门;8—防喷管;9—油嘴套;10—油压表;11—回压表;12—套压表;13—单流阀;14—套管头;15—取样阀门;16—油管头

1)套管头

套管头在井口装置的下端,是连接套管和各种井口装置的一种部件,由本体、套管悬挂器和密封组件组成。其作用是支持技术套管和油层套管的重力,密封各层套管间的环形空间,为安装防喷器、油管头和采油树等上部井口装置提供过渡连接,并通过套管头本体上的两个侧口可以进行补挤水泥、监控井液和平衡液等作业。

2)油管头

油管头安装于采油树和套管头之间,其上法兰平面为计算油补距和井深数据的基准面。其作用是支撑井内油管的重力;与油管悬挂器配合密封油管和套管的环形空间;为下接套管头、上接采油树提供过渡;并通过油管头四通体上的两个侧口(接套管阀门),完成注平衡液及洗井等作业。

3)采油树

采油树是指油管头以上的部分,连接方式有法兰式和卡箍式。采油树的作用是控制和调节油井生产,引导从井中喷出的油气进入出油管线,实现下井工具仪器的起下等。

采油树的主要组成部件及附件的作用如下:

(1)总闸门:安装在油管头的上面,用于控制油气流入采油树的通道,因此,在正常生产时它都是全开的,只有在需要长期关井或其他情况下才关闭。

(2)油管四通(或三通):其上下分别与清蜡闸门和总闸门相连,两侧(或一侧)与生产闸门相连。它既是连接部件,也是油气流出和下井仪器的通道。

(3)生产闸门:安装在油管四通或三通的两侧,其作用是控制油气流向出油管线。正常生产时,生产闸门总是打开的,在更换检查油嘴或油井停产时才关闭。

(4)清蜡闸门:安装在采油树最上端的一个闸门。正常生产时保持开启状态以便观察油管压力,它的上面可连接清蜡或试井用的防喷管,清蜡或试井时打开,清蜡或试井后关闭。

(5)套管四通:其上面与总阀门相通,下部连接套管头,左右与套管闸门相连。它是油管套管汇集分流的主要部件。通过它密封油套环空、油套分流。外部是套管压力,内部是油管压力。

(6)回压闸门:安装在油嘴后的出油管线上,在检查和更换油嘴以及维修生产闸门及修井作业时关闭,以防止出油管线内的流体倒流,有的油井在此位置上装了一个单流阀代替了回压闸门。

(7)防喷管:防喷管是用φ63mm(2.5in)油管制成,外部套φ89mm(3.5in)管,环空内循环蒸汽或热水(油)保温(不保温循环的就不用外套),在自喷井中有两个作用:一是在清蜡前后起下清蜡工具及溶化刮蜡片带上来的蜡;二是各种测试、试井时的工具起下。

(8)单流阀:防止流出井口原油倒流回井筒。

2.地面流程主要设备

一般来说,自喷井井口地面流程都安装一套能够控制、调节油气产量的采油树;还有对油井产物和井口设备加热保温的一套装置,以及计量油气产量的装置,主要包括加热炉、油气分离器、高压离心泵及地面管线等。这一系列流程设备对其他采油方式也具有通用性。

二、机械采油

在油田开发过程中,由于油层本身压力就很低,或由于开发一段时间后油层压力下降,使油井不能自喷或不能保持自喷,有时虽能自喷但产量很低,必须借助人为能量进行采油,即利用一定的机械设备(地面和井下)将井中油气采至地面的方法。机械采油可分为有杆泵采油和无杆泵采油两大类。

(一)有杆泵采油

有杆泵采油装置包括游梁式抽油机—深井泵装置和地面驱动螺杆泵抽油装置。

1.游梁式抽油机—深井泵装置

1)游梁式抽油机

游梁式抽油机结构见图5-4。它是有杆泵采油的主要地面机械传动装置。它和抽油杆、深井泵配合使用,能将原油抽到地面。使用抽油装置的油井通常称为“抽油井”。抽油机的工作特点是连续运转、长年在野外、无人值守。因此,对抽油机的要求应当是强度高、使用寿命长、有一定的超载能力、安装维修简单、适应性强。

图5-4 游梁式抽油机结构图

1—悬蝇器;2—毛辫子;3—驴头;4—游梁;5—支架轴;6—横梁轴;7—横梁;8—连杆;9—平衡块;10—曲柄;11—大皮带轮;12—皮带;13—电动机;14—输入轴;15—输出轴;16—曲柄销;17—支架;18—底座;19—光杆

(1)主要部件的作用。

①驴头:装在游梁的前端,其作用是保证抽油时光杆始终对准井口中心位置。驴头的弧线是以支架轴承为圆心、游梁前臂长为半径画弧而得到的。

②游梁:游梁固定在支架上,前端安装驴头承受井下负荷,后端连接连杆、曲柄、减速箱传送电动机的动力。

③曲柄—连杆机构:它的作用是将电动机的旋转运动变成驴头的上下往复运动。在曲柄上有4~8个孔,是调节冲程时用的。

④减速箱:它的作用是将电动机的高速旋转运动变成曲柄轴的低速转动,同时支撑平衡块。

⑤平衡块:平衡块装在抽油机游梁尾部或曲柄轴上。它的作用是:当抽油机上冲程时,平衡块向下运动,帮助克服驴头上的负荷;在下冲程时,电动机使平衡块向上运动,储存能量。在平衡块的作用下,可以减少抽油机上下冲程的负荷差别。

⑥悬绳器:它是连接光杆和驴头的柔性连接件,还可以供动力仪测示功图用。

(2)工作原理。

电动机将其高速旋转运动通过皮带和减速箱传给曲柄轴,并带动曲柄轴作低速旋转运动;曲柄又通过连杆经横梁带动游梁上下摆动。游梁前端装有驴头,挂在驴头上的悬绳器便带动抽油杆作上下垂直往复运动,抽油杆带动活塞运动,从而将原油抽出井筒。

2)深井泵

深井泵是油井的核心抽油设备,它是通过抽油杆和油管下到井中并沉没在液面以下一定深度,靠抽吸作用将原油送到地面。

深井泵主要由工作筒(包括外筒和衬套)、活塞、游动阀(排出阀)及固定阀(吸入阀)组成,其工作原理见图5-5。

图5-5 泵的工作原理图

1—排出阀;2—活塞;3—衬套;4—吸入阀

上冲程:驴头上行,抽油杆柱带着活塞上行,活塞上的游动阀受内液柱的压力而关闭。如管内已经充满液体,则将在井口排出相当于活塞冲程长度的一段液体。与此同时,活塞下面泵筒内的压力降低,当泵内压力低于沉没压力(环行空间液柱压力)时,在沉没压力的作用下固定阀被打开,原油进入泵内占据活塞所让出的体积,如图5-5(a)所示。

下冲程:驴头下行,抽油杆柱带着活塞向下运动,吸入泵内的液体受压,泵内压力升高。当此压力与环形空间液柱压力相等时,固定阀靠自重而关闭。在活塞继续下行中,泵内压力继续升高,当泵内压力超过活塞以上液柱压力时,游动阀被顶开,活塞下部的液体通过游动阀进入上部油管中,即液体从泵中排出,如图5-5(b)所示。

3)抽油杆及井口装置

(1)抽油杆。

抽油杆是抽油装置的重要组成部分,它上连抽油机,下接深井泵,起中间传递动力的作用。抽油杆的工作过程中受到多种载荷的作用,且上下运动过程中受力极不均匀,上行时受力大,下行时受力小。这样一大一小反复作用的结果,很容易使金属疲劳,使抽油杆产生断裂。因此,要求抽油杆强度高、耐磨、耐疲劳。

抽油杆一般是由实心圆形钢材制成的杆件。两端均有加粗的锻头,下面有连接螺纹和搭扳手用的方形断面。抽油杆柱最上面的一根抽油杆称为光杆。光杆与井口密封填料盒配合使用,起密封井口的作用。

(2)井口装置。

抽油井井口装置和自喷井相似,承受压力较低。它主要由套管四通(或套管三通)、油管四通(或油管三通)、胶皮闸门和光杆密封段(或密封填料盒)组成,其他附件的多少及连接方法,视各油田的具体情况而定。但无论采取什么形式,抽油井井口装置必须具备能测示功图、动液面,能取样、观察压力等功能,并且要方便操作和管理。图5-6是抽油井掺水井口装置。

图5-6 抽油机掺水井口装置

1—胶皮闸门;2—油管放空阀门;3—总闸门;4—套管测试闸门;5—套管闸门;6—回压闸门;7—直通阀门(小循环);8—热洗阀门;9—掺水阀门(大循环);10—单流阀;11—掺水调节阀;12—生产闸阀门;13—油压表;14—光杆密封段;15—套压表;16—套管出液阀

2.地面驱动螺杆泵抽油装置

20世纪70年代后期,螺杆泵开始应用于原油开采。螺杆泵是一种容积式泵,按驱动形式可分为地面驱动螺杆泵和井下驱动螺杆泵。

地面驱动螺杆泵设备如图5-7所示。它是由地面驱动系统、抽油杆柱、抽油杆柱扶正器、螺杆泵等部分组成。其工作原理是:螺杆泵是靠空腔排油(即转子与定子间形成的一个个互不连通的封闭腔室),当转子转动时,封闭空腔沿轴线方向由吸入端向排出端方向运移。封闭腔在排出端消失,空腔内的原油也就随之由吸入端均匀地挤到排出端,同时又在吸入端重新形成新的低压空腔将原油吸入。这样,封闭空腔不断地形成、运移和消失,原油便不断地充满、挤压和排出,从而把井中的原油不断地吸入,通过油管举升到井口。

图5-7 螺杆泵采油示意图

1—电控箱;2—电动机;3—皮带;4—减速箱;5—方卡子;6—专用井口;7—套压表;8—抽油杆;9—油管;10—抽油杆扶正器;11、16—油管扶正器;12—定子;13—转子;14—定位销;15—油管防脱装置;17—筛管;18—套管;19—丝堵

螺杆泵采油装置结构简单,占地面积小,有利于海上平台和丛式井组采油;只有一个运动件(转子),适合稠油井和出砂井应用;排量均匀,无脉动排油特征;阀内无阀件和复杂的流道,水力损失小;泵实际扬程受液体黏度影响大,黏度上升,泵扬程下降较大。

(二)无杆泵采油

无杆泵采油包括气举采油、电动潜油离心泵采油、井下驱动螺杆泵采油、水力活塞泵采油和射流泵采油。

1.气举采油

当油气能量不足以维持油井自喷时,为使油井继续出油,人为地将气体(天然气或空气)压入井底,利用气体的膨胀能量将原油升举到地面,这种采油方法称为气举采油法。气举方式有环形空间进气方式和中心进气方式两种。

气举采油法的井口、井下设备比较简单,管理调节与自喷井一样方便。

1)气举原理

以环形空间进气方式为例。油井停产时,油管、套管内的液面在同一个位置上。开动压风机向油套环形空间注入压缩气体(空气或天然气),环形空间液面被挤压向下(如果不考虑液体被挤进油层,则环形空间内的液体全部进入油管),油管内液面上升,当环形空间的液面下降到管鞋时,压风机达到最大压力,称为气举启动压力。当压缩气进入油管后,油管内原油混气,液面不断升高,直至喷出地面。

在开始喷出之前,井底压力总是大于油层压力。喷出之后,由于环形空间继续压入气体,油管内混气液体不断喷出,使混气液体的密度也越来越小,管鞋压力急剧下降。当井底压力低于油层压力时,原油便从油层流入井底。由于油层出油,使油管内混气液体的重度稍有增加,因而使压缩机的压力又有所上升,经过一段时间后趋于稳定,稳定后的压风机压力称为气举工作压力。这时,油层连续不断地稳定出油,井口连续不断地生产。

2)气举方式

气举方式有两种:

(1)环形空间进气方式。该气举方式也称反举。它是指压缩气体从油套环形空间注入,原油从油管中举出。

(2)中心进气方式。它与环形空间进气方式正好相反,即从油管注气,原油从油套环形空间返出。该气举方式也称正举。

当油中含蜡、含砂时,如采用中心进气,因油流在环形空间流速低,砂子易沉降下来,同时在管子外壁的蜡也难清除,所以在实际工作中,多采用环形空间进气方式。

3)气举采油的特点

气举采油的优点:井下设备一次性投资低,维修工作量小;井下无摩擦件,适宜于含砂、蜡、水的井;不受开采液体中腐蚀性物质和高温的影响;易于在斜井、拐弯井、海上平台使用;易于集中管理和控制。缺点:气举采油必须有充足的气源;如在高压下连续气举工作,安全性较差;套管损坏了的高产井、结蜡井和稠油井不宜采用气举;小油田和单井使用气举采油效果较差。

图5-8 潜油电泵井装置示意图

2.电动潜油离心泵采油

电动潜油离心泵(简称潜油电泵或电泵)属于无杆泵抽油设备。它是用油管把离心泵和潜油电动机下入井中,用潜油电动机带动离心泵把油举升到地面。电泵的排量及扬程调节范围大,适应性强,地面工艺流程简单,管理方便,容易实现自动化,经济效益高。

电泵设备由地面、中间和井下三大部分组成,如图5-8所示。

地面部分由变压器、接线盒、控制柜(配电盘)、电缆及井口装置等组成,主要起控制、保护、记录的作用。

中间部分主要是电缆,有动力电缆和引线电缆。动力电缆将地面电流传送到井下引线电缆;而引线电缆的作用是连接动力电缆和电动机。

井下部分一般自上而下依次是泄油阀、单流阀和井下机组。井下机组包括多级离心泵、油气分离器、保护器和潜油电动机。有的电泵井潜油电动机下部还装有监测装置,可测定井底压力、温度、电动机绝缘程度、液面升降情况,并将信号传送给地面控制台。

潜油电动机安装在井下机组的最下部,是电泵的动力。地面的高压电流经电缆传输给潜油电动机。潜油电动机把电能变为机械能输出,通过轴带动电泵工作。保护器安装在潜油电动机的上部,起平衡电动机中的压力,润滑、密封电动机的作用。油气分离器通常安装在保护器的上端、多级离心泵的下端,用来分离原油中的游离气体,提高泵效。多级离心泵由固定部分和转动部分组成。转动部分有泵轴,轴上安装有大量叶轮。当电动机带动泵轴上的叶轮高速旋转时,充满在叶轮内的液体在离心力的作用下,被甩向叶轮的四周,给井液加速,使井液具有动能,并由导壳引入次一级叶轮,这样逐级叠加后就获得一定扬程,并将井液举升到地面。

电泵机组的工作过程可简单地叙述为:地面电源通过潜油电泵专用电缆输入给井下的潜油电动机,潜油电动机就带动多级离心泵旋转,通过离心泵多级叶轮的旋转离心作用,将井底原油举升抽汲到地面。

实践表明,对于强水淹井、高产井、不同深度井以及定向井、多砂和多蜡井,电泵的使用效果都很好。其排量范围为16~14310m3/d;最大下泵深度可达4600m,井下最高工作温度可达230℃。

3.井下驱动螺杆泵采油

与地面驱动螺杆泵不同的是,井下驱动螺杆泵动力置于井底,不用抽油杆。其工作原理是:用油管将泵与电动机、保护器下入井内液面以下,电动机通过偏心联轴节带动螺杆转动,而螺杆又是装在衬套中,螺杆与衬套所形成的腔室之间是隔离的,当螺杆转动时,这些腔室逐渐由下而上运动,使液体压力不断提高,从而将井液送到地面。

就目前的情况来看,地面驱动螺杆泵从技术上比较成熟;井下驱动螺杆泵有很多优点,但还处于实验阶段。

4.水力活塞泵采油

水力活塞泵是一种液压传动的无杆泵抽油装置,是液压传动在抽油设备上的应用。与有杆泵相比,其根本特点是改变了能量的传递方式。水力活塞泵由地面、中间和井下三大部分组成,如图5-9所示。

图5-9 开式水力活塞泵采油系统

1—高压控制管汇;2—地面动力泵;3—发动机;4—动力液处理罐;5—井口装置;6—井下泵工作筒;7—沉没泵

地面部分包括动力液处理罐、发动机、地面动力泵、高压控制管汇、阀组及井口装置,担负提供动力的任务。

中间部分是动力液由地面到井下机组的中心油管,乏动力液和产出液排至地面的专门通道。

井下部分由工作筒和沉没泵等组成,起抽油的主要作用。

水力活塞泵的工作原理是:电动机带动地面动力泵,从储液罐来的液体经动力泵升压后进入中心油管,高压动力液体进入井下的水力活塞泵后,带动泵工作,抽汲的液体和做功后的动力液共同经外层油管返回地面。

水力活塞泵排量范围较大(16~1600m3/d),对油层深度、含蜡、稠油、斜井及水平井具有较强的适应性,可用于各种条件的油井开采,并可在温度相对较高的井内工作。但机组结构复杂,加工精度要求高,动力液计量困难。

图5-10 射流泵工作原理图

5.射流泵采油装置

射流泵分为地面部分、中间部分和井下部分。其中地面部分和中间部分与水力活塞泵相同,所不同的是水力喷射泵只能安装成开式动力液循环系统。井下部分是射流泵,由喷嘴、喉管和扩散管三部分组成,如图5-10所示。

射流泵的工作原理:动力液从油管注入,经射流泵的上部流至喷嘴喷出,进入与地层液相连通的混合室。在喷嘴处,动力液的总压头几乎全部变为速度水头。进入混合室的原油则被动力液抽汲,与动力液混合后流入喉管,在喉管内进行动量和动能转换,然后通过断面逐渐扩大的扩散管,使速度水头转换为压力水头,从而将混合液举升到地面。

射流泵的特点:井下设备没有动力件;射流泵可坐入与水力活塞泵相同的工作筒内;不受举升高度的限制;适于高产液井;初期投资高;腐蚀和磨损会使喷嘴损坏;地面设备维修费用相当高。

采油方法有哪几种

采油方法有:自喷采油、气举采油、有杆泵采油、无杆泵采油这四种。

1、自喷采油:自喷采油就是原油从井底举升到井口,从井口流到集油站,全部都是依靠油层自身的能量来完成的。自喷采油的能量来源主要包括两个方面,是井底油流所具有的压力,这个井底压力来源于油层压力;是随同原油一起进入井底的溶解气所具有的弹性膨胀能量。就是这些能量把原油从井底连续不断地举升到地面。

2、气举采油:气举采油就是当油井停喷以后,为了使油井能够继续出油,利用高压压缩机,从地面向井筒注入高压气体将原油举升至地面的一种人工举升方式。气举采油是基于U形管的原理,从油管与套管的环形空间,通过装在油管上的气举阀,将高压气体连续不断地注入油管内,使油管内的液体与注入的高压气体混合,降低液柱的密度,减少液柱对井底的回压,从而使油层与井底之间形成足够的生产压差,油层内的原油不断地流入井底,并被举升到地面。

3、有杆泵采油是当前国内外最广泛应用的采油方法,国内有杆泵采油约占人工举升采油总井数的90%左右,它设备简单,投资少,管理方便,适应性强,从200~300米的浅井到3000米的深井,产油量从日产几吨到日产100~200吨都可以应用。在设备制造方面,从地面抽油机、井下抽油杆到抽油泵,国内产品早已系列化、成套化,能够满足油田生产需要。抽油泵的不足之处是排量不够大,对于日产量达到200吨以上的油井,不能满足要求。

4、无游梁式抽油机:无游梁式抽油机的种类较多,主要为了减轻抽油机重量,扩大设备的使用范围以及改善其技术经济指标,特点多为长冲程低冲次,适合于深井和稠油井采油。无游梁式抽油机又分为机械式无游梁抽油机和液压式无游梁抽油机。

5、无杆泵采油:无杆泵采油主要包括潜油电动离心泵采油和水力活塞泵采油。潜油电动离心泵是由地面电源、通过变压器、控制屏和电缆,将电能输送给井下潜油电机,使潜油电机带动多级离心泵旋转,把原油举升到地面上来。

稠油注蒸汽开采方法与常规开采方法的差别

稠油注蒸汽开采,按驱动方式分为蒸汽吞吐及蒸汽驱两个阶段,这是国外通常的作法。但是从生产作业程序上可分为三个阶段,即: 蒸汽吞吐阶段;注汽井连续注汽进行蒸汽驱,采油井继续进行蒸汽吞吐阶段;采油井结束吞吐连续采油,进行蒸汽驱开采阶段。这样的划分,给出一个由完全靠蒸汽吞吐开采到完全靠汽驱开采的过渡阶段,在此过渡阶段,根据油藏热采动态,如各井点、井组的采出程度以及温度场、压力场,含油饱和度场的分布情况进行较灵活的注汽及采油的调控,以zui大限度地提高开发效果及经济效益。稠油蒸汽驱开采筛选标准是按先蒸汽吞吐接着进行蒸汽驱开采考虑的。由于稠油油藏进行蒸汽驱开采是高技术、高投入、高速度、高耗能,能否取得益、高水平不仅主要取决于油藏地质条件,也取决于工艺技术的先进住。有些油藏条件,虽然在技术上能够成功,但经济上可能无利可图而失败,因而稠油油藏进行蒸汽驱开采,还具有某些技术上、经济上的风险性。由于蒸汽吞吐方法是单井作业,即每口井既是注汽井又是生产井,将一定量蒸汽注入油层后,关井数天后即开井回采,靠加热油层降低原油粘度来提高产量。这种方法的经济风险性较小,而且,虽然可以每口井进行5~8周期的吞吐作业,采油速度高达3%~8%,一般经济效益比蒸汽驱高数倍,但是原油采收率仅10%~20%,损失大量可采储量。因此,并不推荐稠油油藏只进行蒸汽吞吐开采,可以将蒸汽吞吐筛选标准作为评价稠油油藏的一种方法和依据,对某些很难进行蒸汽驱开采和稠油油藏,先进行蒸汽吞吐开采也是可行的,但不是zui优选择。

采油方法有哪些?采油设备有哪些

本文编辑:admin
采油

更多文章:


理化生教研组工作计划(初中理化生教研组工作计划【三篇】)

理化生教研组工作计划(初中理化生教研组工作计划【三篇】)

本文目录初中理化生教研组工作计划【三篇】化学教研组工作计划(合集7篇)理化生教研组教研活动计划范文理化生教研组工作计划2022怎么写2022年新学期教研工作计划书(精选5篇)2023年教研处工作计划6篇高中化学教研组工作计划范文6篇2019

2024年7月18日 19:10

abac的四字词语(abac的四字词语)

abac的四字词语(abac的四字词语)

本文目录abac的四字词语ABAc的四字成语有哪些abac的词语四个字的词语abac式的四字词语有哪些abac的四字词语有哪些写出ABAC式的四字词语abac式的四字词语有哪些些AB AC的四字词语abac的四字词语  1、多种多样、毛手毛

2024年6月22日 07:50

女足世界杯2019分组(2019女足世界杯赛程赛果)

女足世界杯2019分组(2019女足世界杯赛程赛果)

本文目录2019女足世界杯赛程赛果女足世界杯附加赛赛程安排女足世界杯各组积分榜女足世界杯2019分组(各组实力对比分析)2019女足世界杯赛程表(全球最顶尖的女子足球赛事)女足世界杯赛程2019(全球巅峰足球盛宴)女足世界杯什么时候开始和中

2024年4月19日 09:20

经典英文诗歌?最经典优美的英文诗

经典英文诗歌?最经典优美的英文诗

本文目录经典英文诗歌最经典优美的英文诗关于英文诗歌带翻译集锦关于经典简单的英文诗歌优美简短的英文诗歌欣赏英文诗歌短篇英文诗歌英文诗歌 海鸥的梦想关于英文诗歌朗诵大全优美的英文诗朗诵3篇经典英文诗歌   在日常学习、工作抑或是生活中,大家一定

2024年8月30日 07:50

二开头的四字成语(二打头四字成语有哪些)

二开头的四字成语(二打头四字成语有哪些)

本文目录二打头四字成语有哪些二字开头的四字成语大全以二字开头的成语二字开头四字成语二字开头的四个字成语有哪些二开头的四字成语写出开头数字是2的四字成语以二开头的四字成语二打头四字成语有哪些 1. 二字头的四字成语有哪些 二八佳人 二八:

2024年5月12日 14:00

祖国生日快乐(怎样写祖国的生日快乐)

祖国生日快乐(怎样写祖国的生日快乐)

本文目录怎样写祖国的生日快乐祖国生日祝福语 简短独特庆祝祖国生日的短句祝福祖国生日快乐词语祝福祖国生日快乐的祝福语祖国生日快乐祝福语祝祖国生日快乐的祝福语大全祝新中国生日快乐祝福语怎样写祖国的生日快乐一、黄河孕育了华夏民族,长江见证了炎黄历

2024年9月15日 03:50

让心灵洒满阳光(一年级简单的让心灵充满阳光的手抄报应该写些什么内容)

让心灵洒满阳光(一年级简单的让心灵充满阳光的手抄报应该写些什么内容)

本文目录一年级简单的让心灵充满阳光的手抄报应该写些什么内容让心灵充满阳光 作文 800字让心灵充满阳光的手抄报怎么画2017年5.25心理健康日活动宣传标语,2017年5.25心理健康日活动宣传标语让心灵充满阳光50字手抄报 阳光手抄报让心

2024年6月23日 20:30

动物生物技术论文?生物医学动物实验研究论文

动物生物技术论文?生物医学动物实验研究论文

本文目录动物生物技术论文生物医学动物实验研究论文动物学论文哪里找动物科技论文怎么写(2)关于动物和植物的科学小论文600字动物学论文急需有关《动物是如何进化的》不少于3000字的论文狼的论文 800字 要新颖 要有参考书目范文:动物学论文动

2024年6月13日 18:50

五年级数学试卷(小学五年级数学期末测试卷(二十))

五年级数学试卷(小学五年级数学期末测试卷(二十))

本文目录小学五年级数学期末测试卷(二十)我需要 五年级上册小学数学期末真题卷(北师版),有人分享教辅资料的百度网盘吗我需要!!小学五年级数学上册哪些练习卷比较好数学五年级试卷分析小学五年级上册数学期末试卷朝凤路学区五年级数学第一学期期中质量

2024年9月20日 07:00

如何进行商品品项管理?商品管理的要点

如何进行商品品项管理?商品管理的要点

本文目录如何进行商品品项管理商品管理的要点商品管理超市商品管理流程为什么要进行商品管理超市商品管理系统后台开发有哪些基本功能在超市里,商品管理员的工作是做什么的商品管理体系的核心内容有哪些商品管理岗位职责商品管理学包括哪些科目如何进行商品品

2024年3月6日 07:20

工业经济运行措施(工信部:提振工业经济!为此采取了怎样的措施)

工业经济运行措施(工信部:提振工业经济!为此采取了怎样的措施)

本文目录工信部:提振工业经济!为此采取了怎样的措施推动工业经济的任务和行动方案上半年工业经济企稳回升相关文章(精选4篇)走中国工业化道路的具体措施厦门发布四大措施促进工业经济稳定运行 成长型中小企业贴息最高50万工业经济运行措施云南省工业企

2024年4月7日 15:50

月嫂培训教材(月嫂培训教材 如何选择月嫂培训教材)

月嫂培训教材(月嫂培训教材 如何选择月嫂培训教材)

本文目录月嫂培训教材 如何选择月嫂培训教材三十多岁学月嫂可以吗,还可以做月嫂这个工作吗哪里有正规的月嫂培训教材买重庆哪里可以学习到免费的月嫂培训地址在哪报名一家月嫂培训一般要多少钱参加月嫂培训得花多少钱啊月嫂培训教材 如何选择月嫂培训教材如

2024年9月4日 08:00

偏僻的意思解释?偏僻的意思是什么

偏僻的意思解释?偏僻的意思是什么

本文目录偏僻的意思解释偏僻的意思是什么偏僻的拼音和意思偏僻的拼音偏僻的意思偏僻是什么意思“偏僻”的近义词是什么偏僻的近义词偏僻的近义词偏僻的近义词是什么偏僻的近义词是什么偏僻的意思解释偏僻的意思是意思是离城市或中心区远,交通不便;引申为孤陋

2024年5月10日 07:30

毅力的意思是?毅力的意思解释

毅力的意思是?毅力的意思解释

本文目录毅力的意思是毅力的意思解释毅力是什么毅力的意思毅力是什么意思毅力是什么意思解释毅力的近义词有那些毅力近义词是什么呢“毅力”的近义词是什么毅力的近义词 毅力有哪些近义词毅力的意思是毅力的意思是坚强、持久的意志。毅力也叫意志力,是人们为

2024年4月16日 23:00

王母娘娘请客(为啥说西游中玉帝和王母是夫妻关系)

王母娘娘请客(为啥说西游中玉帝和王母是夫妻关系)

本文目录为啥说西游中玉帝和王母是夫妻关系“王母娘娘请客”的歇后语是什么《山海经》记载的西王母,是如何成神的王母娘娘来例假是什么意思1为啥说西游中玉帝和王母是夫妻关系王母娘娘在西游记中虽然出场不多,却是一位极为重要的政治人物。著名的蟠桃胜会,

2024年4月13日 14:30

儿歌大全100首歌词(经典儿歌100首歌词都是什么)

儿歌大全100首歌词(经典儿歌100首歌词都是什么)

本文目录经典儿歌100首歌词都是什么100首歌词童谣大全_经典趣味儿歌童谣大全100首儿歌大全100首歌词100首经典童谣儿歌大全经典儿歌100首歌词都是什么经典儿歌100首是:《种太阳》、《找朋友》、《友谊地久天长》、《樱花》、《摇啊摇》

2024年8月25日 19:00

照片里的故事作文(照片里的故事满分作文400字10篇)

照片里的故事作文(照片里的故事满分作文400字10篇)

本文目录照片里的故事满分作文400字10篇照片里的故事作文700字照片里的故事作文照片里的故事六百字作文六年级照片里的故事作文600字初中3篇五年级照片里的故事作文600字照片里的故事作文600字初一初一照片里的故事作文600字有关照片里的

2024年5月31日 03:50

五四班的新老师(2012年寒假小学生推荐书目)

五四班的新老师(2012年寒假小学生推荐书目)

本文目录2012年寒假小学生推荐书目读《五四班的新老师》《五四班的新老师》还有另一册吗叫神马五年四班的新老师读后感五年级四班写的作文,新来的唐老师五四班的新老师优秀读后感我的新老师作文600字初中读《五四班的新老师》有感作文2012年寒假小

2024年7月8日 03:30

网站安全检测报告(网站安全自查报告【三篇】)

网站安全检测报告(网站安全自查报告【三篇】)

本文目录网站安全自查报告【三篇】网络安全自查报告3篇公司网络安全检查工作自查报告校园网络安全自检自查报告网络安全自查报告范文3篇2022网络安全自查总结报告范文10篇网络安全自查报告5篇检测报告怎么在官网查询网站安全自查报告【三篇】  

2024年2月25日 09:30

夏令营中的较量(有关日中孩子夏令营的事件有哪些)

夏令营中的较量(有关日中孩子夏令营的事件有哪些)

本文目录有关日中孩子夏令营的事件有哪些夏令营中的较量的介绍如何理解《夏令营中的较量》这篇课文夏令营中的较量的基本情况孙云晓的《夏令营中的较量》真实吗孙云晓对于夏令营中的较量面对提出质疑的人是谁啊读夏令营中的较量有感读《中日小学生夏令营中的较

2024年4月2日 08:30