线性规划论文(求论文 题目 浅谈数学规划模型在经济学中的应用 4000字左右 给参考资料的也行)
本文目录
- 求论文 题目 浅谈数学规划模型在经济学中的应用 4000字左右 给参考资料的也行
- 7. 大规模线性规划:行生成和Benders分解
- 线性规划的实际应用有些什么呢
- 关于七巧板的论文 1200字
- 如何对线性规划进行灵敏度分析论文
求论文 题目 浅谈数学规划模型在经济学中的应用 4000字左右 给参考资料的也行
简单说一下时代背景,如规划模型在经济学精确化条件下越来越重要,作为运筹学的重要分支,应用……再解释一下数学规划的定义,稍加阐释,百度上有,不过太简单,然后说一下数学规划的分类。最核心的环节是,对分类在经济学中应用的举例,注意详略得当,重点介绍线性规划,非线性规划,动态规划,以上三类书上都有例子。其余的不必展开论述。最后总结一下就好了 。附:类似论文一篇 浅析数学在经济学中的应用 摘要:半个多世纪以来经济学领域中数理形式的运用是—个重要的发展趋势,对经济理论和实践也有重要的影响。西方经济学知识的普及也已将数学知识渗透到了经济学的方方面面。将当今经济学名刊稍作翻阅便会发现,大量数学方法的运用甚有超越数学专业学生的趋势,经济学论文的质量要看其数学方法应用的程度,经济学硕士博士的录取要看其数学背景的深厚,数学几乎有一统经济学天下之势。经济学遇上数学将会演绎如何的理性之美? 关键词:经济学;数学;西方经济学 一、经济学的定义 资源的有限性和人类欲望的无穷性是经济学诞生的根基,这是一个常人皆知浅之又浅但又非常深刻的道理。经济学要解决的其实就是一个如何选择的问题,也就是说,经济学就是要解决选择以什么样的方式把有限的资源合理有效的配置进而达到满足人类无穷之欲望的目的。所以西方经济学里经济学被定义为研究稀缺资源配置的学科,它以理性的假设为逻辑起点,研究人类行为,这些基于现实基础研究的问题与现实经济生活中存在的问题紧密相连,研究的结论能有助于解释或理解现实经济问题。但是,经济关注人类行为本身的目的最终就是为了追求资源配置的效率(efficiency)。 经济学作为一门研究人类社会的事实的学科,有着它独特的味道。它可以联系到政治,社会等各种学科。对于经济学家,当他试图解释这个世界的时候,他就是经济学家,当他试图改变这个世界的时候,他就是政客。特殊的双重身份也说明经济学的多元性。甚至有人提出这样一种见解,认为经济学在本质上和史学没有什么差别,只是史学研究的大多是过去的事情,而经济学关注的历史长度就没那么长了,而且经济学更多的借用了数学和统计的工具来阐释问题。 二、数学在经济学中的应用 西方经济学者大量的把数学引入经济学,就是试图以一种精确的方式阚释世界,进而试图把现代西经济学发展成为一门精确的科学。以高鸿业主编的《西方经济学(微观部分)第四版)》为例,在说明边际效用时应用的极限和求导;在分析蛛网模型时应用的拉格朗日乘数法;在论证边际技术替代率时应用的多元函数微分法;在阐述寡头厂商之间的博弈策略时应用的博弈论与均衡的概念;以及无处不在的各种函数曲线的应用和函数表达式的推导。而这些只是经济学学习的入门课本上的一些例子。而在整个经济学领域里,边际分析、瓦尔拉斯一般均衡论、线性规划、投入产出分析、博弈论以及随机数学、模糊数学和非线性科学在经济中也有着广泛的应用。这些本来属于数学范畴的工具现在充满了经济学研究的方方面面。同时诺贝尔经济学奖的设立似乎也是一个强有力的明证。 但我们也不可否认,数学作为一门工具,在对经济学理论的解释中也发挥了重要的作用。下面来看几个经典的例子。 1.边际理论 公元17世纪,随着欧洲封建社会开始解体和资本主义工场手工业向机器大生产的过度,向数学提出了一系列必须从运动变化和发展的观点来研究事物的新问题。于是,从量上描述事物的运动和变化规律的数学部分——变量数学便应运而生。19世纪70年代初期,杰文斯、门格尔和瓦尔拉斯三位不同国籍的学者将他们的“欲望”概念或者“效用”概念和“微分”的基本概念结合起来,“边际效用”使出现了。经济学史上著名的“边际革命”也随着微积分思想向经济学渗透而爆发。在边际革命鼎盛时期之后,边际分析方法本身朝着更深更广的方向发展。而边际分析这一脱胎于微积分思想的有力工具,也在经济学的各个研究领域一宏观经济学、线性规划分析、经济计量学、福利经济学等等中得到了普遍的应用。 2.一般均衡理论 1 8世纪的欧洲,自由竞争的资本主义正处于上升的历史阶段。经济学家们注意到在一个社会里有众多的消费者和生产者,他们各自独立做出的决策不但没有引起混乱,反而在实际中产生了一种最优的经济状态。1776年,亚当·斯密就在他那本堪称“经济学的圣经”的‘《国民财富的性质和原因的研究》中提出,这是由于有一只“看不见的手”在起作用。而在一百年后,法国经济学家瓦尔拉斯把斯密的这一思想提炼成一般均衡问题,把用文字表述的思想借助19世纪已经发展成熟的线性代数理论转化成了数学问题。按照线性代数的观点,商品空间可以看作一个线性空间,每一种商品的需求或供给可以看作是一种约束,这种约束用状态变量所满足的方程来表示。而找到一组确定的值满足所有方程,就找到了均衡体系。瓦尔拉斯在1874年出版的代表作《纯粹经济学要义势中,从交换均衡入手,分析了由交换均衡、生产均衡、资本积累均衡和货币均衡四个方面构成的体系,阐明了在纯粹竞争条件下整个经济处于完全均衡状态时各种经济变量的均衡值的决定条件与相互关系。瓦尔拉斯借助于线性代数创造的这样一套全新的理论概念体系当时并没有被同时代的经济学家立刻适应和接受,反而对他诸多责难。但是,这一开拓性的工作却对后世产生了持久的深远影响。 三、数学方法在经济学中是工具 通过上面的几个例子,可以看出,数学的灵活运用对于一个经济理论的阐述的确起到了非同小可的作用。但我们必须看到,对于经济理论,数学方法是一种分析、论证和研究的工具,这种工具能否产生有用的成果,取决于应用数学的经济理论是否正确。数学方法可以为正确的理论服务,也可以为错误的理论效劳,方程式证明是对的,只是公式上的对,内容上却可能是错的,数学方程式大有用场,但数学本身是没有内容的。大概地对比精确的错可取,世界如此复杂,而统计学的陷阱多如牛毛,可取的结论也要先求大概地对为好,所以,经济学中数学的应用应该是一个附加条件慎之有慎而绝不是人人想用就可用的问题。 记得复旦大学陆铭教授在源于经济学和数学关系的一篇文章中说道,“在经济学里直觉非常重要。有了直觉以后,在做一个数学模型之前,应该在脑子里面有一个故事和逻辑,用数学把这个故事和逻辑写下来。数学的确可以帮助你得到一些结论,但我的经验告诉我,百分之七十甚至百分之八十的结论,可能你在写数学之前就已经知道了;确确实实有百分之二、三十的结论,如果你不写数学可能你就不知道,或者你知道的很模糊。为什么我这样说?回过头来想想看刚刚讲到的起点问题,如果你相信仅仅依靠数学可以帮你把经济学解释清楚,那我就要问,你的起点是哪儿来的?当你去写你的数学的假设时,当你去假设人的行为决策模式的时候,当你去假设模型中的市场结构的时候——是用垄断的市场结构,还是完全竞争的市场结构?在不在你的模型里放政府?——实际上你要做的是用数学来表达一个你对经济现实的认识。如果你说我对这个现实没有认识就直接写数学了,那非常危险的一个结果就是你的起点就错了,于是你的结论不可能是对的,哪怕你数学上非常花俏”。而且陆铭教授还强调了“数学之后”的问题,他说,“你们把数学推导完了,有没有想过在数学逻辑的背后,它的故事是什么,它的经济学含义是什么。这往往是同学们所忽略的。在学习和读论文的过程当中,如果你们忽略这一点,你们学到的就只是数学,而不是经济学。你们在写论文的时候,把数学写完了,写上两个字“证毕”,你的论文最多完成了百分之五十。你要知道,在数学层面上,只要动—叫叫、小的假设,就完全可能得到不同的结论,因此,脱离经济学机制而存在的数学结论是毫无意义的”。 所以思想应该是最重要的,数学是工具,目的是为了把问题看清楚,得出结论。经济学中的数学工具很重要——就仿佛和外国人交流用英语一样重要。但是,与和外国人用英语交流一样,更重要的你想要交流的思想。在经济学中,数学是全球经济学家都能听懂的语言,同样,语言很好并不必然意味着你的思想就很深刻。现在的经济学流派里,不大使用数学的新制度经济学就很有解释力。在经济史上的伟大经济学家,纳什作为一位数学系的博士生,因其博士论文在博奕论中的开拓性贡献而获得了一九九一年诺贝尔经济学奖。 纳什能够获奖,依靠的仅是数学吗?是通过数学所透析出的思想,一种具有开拓性的思想。还有科斯,他从来不用数学,仅凭二十余岁时发表的《企业的性质》及以后发表的《联邦传播委员会》而获得诺贝尔经济学奖,成为经济史上一位举足轻重的人物,科斯的产权理论和交易费用理论,证明了产权制度对经济的重要性,并在此基础上形成一个当前在经济学中十分重要的新制度经济学派。科斯没有凭借任何数学工具,凭借的完全就是一种思想,一种开拓于前人的思想。还有一些经济学家反对在经济学中运用数学工具,如获一九七四年诺贝尔经济学奖的缪尔达尔,他是代表弱势群体说话的经济学家,他对美国黑人和发展中国家人民的关注是经济学人文关怀的体现。同年获奖的经济学家哈耶克是自由主义大师,他对自由问题的论述,无疑是对人类的最大关怀。
7. 大规模线性规划:行生成和Benders分解
行生成就是指的不断添加约束的算法。 因为在求解矩阵中,一个约束条件对应一行,因此添加约束条件的方法自然叫做行生成算法。相对应的,添加变量的方法就叫做列生成算法。 这一节先看行生成算法,用在求解变量不多,但是约束条件特别多的情况下。
Benders分解(Benders Decomposition,BD)的基本思路是:使用 子问题(primal problem) 来寻找合适的约束不断添加到 松弛主问题(relaxed master problem)***隐藏网址*** 问题模型是:
Benders分解将上述模型拆分为只包含x变量的子问题和只包含y变量的主问题。
子问题(SP)为: min cx s.t. Ax = b - By
使用对偶法求解子问题(DSP): max α(b-By’) s.t. Aα ≤ c α无限制
这是个线性规划问题,枚举可行域{α : Aα≤c}的极点(I)和极方向(J)便可以求解了,上面DSP等价于: min q s.t. α i (b-By) ≤ q α j (b-By) ≤ 0 q无限制
定义q(y)为SP问题的最优解,则原问题可以重新写为如下主问题的形式: min q(y)+fy s.t. y∈Y
等价于下面的主问题(MP): min q+fy s.t. α i (b-By) ≤ q α j (b-By) ≤ 0 y∈Y,q无限制
由于约束条件较多,因此α也是非常多的,直接上所有约束条件求解MP比较困难。因此从少量约束条件的松弛主问题开始,逐步把约束条件加上。
在下面的问题中,y∈{0,1}属于复杂约束,因此将原问题按如图的颜色拆分开。
一轮迭代后,UB = 23,LB = 8,还需要继续迭代。后面的求解过程省略。
Benders分解法要求子问题必须为线性,而广义Benders分解法(Generalized Benders Decomposition,GBD)针对这个问题作了改进。广义Benders分解的问题模型是:
由于涉及到了非线性规划,因此要用到拉格朗日法。求解的步骤是:
线性规划的实际应用有些什么呢
下面是几位同学的小论文在课堂上互相交流的成果展示:1. 1提出学习课题:线性规划研究的是线性目标函数在线性约束条件下取得最大值或最小值问题。一般地,线性规划的数学模型是:已知: a11x1+a12x2+…+a1mxm≤b1(这里“≤”也可以是“≥”或“=”号,以下类同)a21x1+a22x2+…+a2mxm≤b2,· · · · · · an1x1+an2x2+···+anmxm≤bn, ` ` 其中aij(i=1,2, ···,n,j=1,2,···,m),bi(i=1,2, ···,n)都是常量,xJ(j=1,2, ···, m)是非负变量,求z=c1x1+c2x2+…+cmxm的最大值或最小值,这里cj(j=1,2, …,m)是常量。提出研究课题:线性规划的理论和方法主要在两类问题中得到应用。一是在人力,物力,资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力,物力,资金等资源来完成该项任务。常见的问题有:1.物资调运问题:例1 某运输公司接受向抗洪抢险地区每天至少运送180吨的任务。该公司有8辆载重为6吨的A型卡车和4辆载重为10吨的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次;每辆卡车每天往返 的成本费A型车为320元,B型车为504元。请你们为该公司安排一下,应该如何调配车辆,才能使该公司所花成本费最低?若只调配A型卡车或B型卡车,所花成本费分别是多少?解:设每天调出A型车x辆,B型车y辆,公司所花成本为z元,则 x≤8y≤424x+30y≥180x+y≤10x∈Ny∈N z=320x+504y 如图,在可行域内的整点中,点(5,2)使z=320x+504y取得最小值,且zmin=2608(元)若只调配A型卡车,则7.5≤x≤8,x∈N,所花的最低成本费z=320×8=2560(元),若只调配B型卡车,由于y∈Φ,即无法调配车辆。 答:每天调出A型卡车5辆,B型卡车2辆,才能使该公司所花成本费最低。若只调配A型卡车,所花成本费是2560元,无法只调配B型车。2.产品安排问题例2 某企业生产A,B两种产品,A产品的单位利润为60元,B产品的单位利润为80元。两种产品都需要在加工车间和装配车间进行生产,每件A产品在加工车间和装配车间各需经过0﹒8h和2﹒4h,每件B产品在两个车间都需经过1﹒6h, 在一定时期中,加工装配车间最大加工时间为240h, 装配车间最大生产时间为288h ,已知销路没有问题,在此一定时期中应如何搭配生产A产品和B产品,企业可获得最大利润? 解:设在此一定时期中生产A产品x件,B产品y件,企业可获利润为z元,则 0﹒8x+1﹒6y≤240 2﹒4x+1﹒6y≤288 x≥0 y≥0 z=60x+80y如图,在可行域内,将直线60x+80y=0平移至M(30,135)时,使z=60x+80y取得最大值,且zmax=12600(元)。
关于七巧板的论文 1200字
写作思路:从班级活动入手,把七巧板的特点写出来。
智力七巧板是由七块形状不同的几何图形组成的,它巧妙地应用了高等数学的几何学、拓扑学和线性规划原理,可以拼搭出几千种形象生动活泼的图案。
智力七巧板的外观设计看似简单,拼装起来奥妙无穷,创造天地无限广阔,深受孩子们的喜爱。当孩子们拿到七巧板时,甭提有多高兴了,他们迫不及待、兴趣盎然地玩了起来。下面是我带领孩子们玩七巧板时的一些片断和实例,和辅导员们共同探讨。‘’
请同学们用两块或三块板以不同的方法拼出这些图形,看谁拼的方法多、速度快而且准确性高。孩子们的热情高涨,每个图形都用了至少两种方法拼了出来,在这种灵活巧妙的小练习中,学生对每块七巧板的认识和理解进一步提升了。
孩子们在快乐的游戏中,认识了七巧板的特征,他们喜欢这种不是游戏的游戏,对七巧板爱不释手,更被七巧板的广阔空间所吸引。
当孩子们对每一块七巧板都有了深刻的认识和理解以后,我就在黑板上画了一个花的图案让他们来试拼,比谁拼图又快又准。大多数孩子在一分钟之内拼了出来。
看着那一张张得意的小脸蛋,我也被感染得漏出了笑容。在夸奖了孩子们一番后,我突然眉头一索,脸一沉,说:“刘老师想把这么漂亮的花画出来,可是我画不好,你们谁能帮我呢?”孩子们一齐举起了小手,跃跃欲试。
我接着说:“你们都这么热心,那就都帮我画吧。请在你的本子上画出来,送给我好吗?”孩子们的积极性和那种助人为乐的精神在内心涌动着,没一会,就画完了。
我又抓住时机,请同学们画出了反向的花:“同学们的花太漂亮了,可惜只有一朵,要是能有一朵和它拼法不同的花就更好了。你们能拼出来吗?”孩子们的积极性和表现欲再次被调动,这次不用拼摆,直接就画出了反向的花。
当孩子们有了拼图的快乐体验后,我进一步引导他们提升一个层次:脑中拼摆,直接画线。这种训练能提高孩子们的注意力、思维能力和创造能力。
七巧板辅导的书中有一些没画分割线的图形,我把这些图形收集起来,每次给出五幅图,比谁画得又快又准。通过对学生进行的在脑中拼摆,在图中直接划分割线的练习,从中总结线性规律,使画图简单化、容易化。几次训练后,他们都能在短时间内,准确地画出分割线了。孩子们在这种快乐的体验中不断进步。
通过一次次的训练,孩子们充分在玩中体验了七巧板拼图的快乐、体验了助人的快乐、体验了成功的快乐,体验了做人的快乐。他们更爱“玩”了。
对七巧板拼图有了一定的经验和体会后,就可以引领学生进行分类练习和分类创作了。难度增加了,挑战性增强了,孩子们的积极性也更高了。
在分类创作中,孩子们还总结了不同类型的创作特点和规律。例如:动物、人类的图形,大多圆形在上边;交通工具类,大多半圆露在外或在下等等。孩子们玩出了经验,玩出了水平,玩出了乐趣,他们玩得更疯狂了。
七巧板是在玩中领略科学,七巧板充分锻炼了学生的创造性思维,七巧板有效提高了学生的分析理解能力,七巧板进一步改善了同学间的关系,七巧板使学生体验到了成功的快乐,七巧板使孩子们学会了学习、学会了分析、学会了理解、学会了思维、学会了比较、学会了合作,七巧板让孩子们改掉了马虎大意的毛病。
七巧板让孩子们认识到了创造的无限潜力。只有不断地把自己的目标定在新的高度上,才能不断地进步。在玩中获得的经验,孩子们定会受益终生。我也会为孩子们的长足进步而不懈努力。
如何对线性规划进行灵敏度分析论文
线性规划中的灵敏度分析包括:
投入产出法中的灵敏度分析
2.方案评价中的灵敏度分析
3.定货批量的灵敏度分析
线性规划中灵敏度分析:
这里max表示求极大值,s.t.表示受约束于,X是目标函数,xj是决策变量。通常假定aij,bi和cj都是已知常数。但是实际上这些参数往往是一些根据估计或预测得到的数据,因而存在误差。同时,在实际过程中,这些参数还会发生不同程度的变化。例如,在处理产品搭配的线性规划问题中,目标函数中的cj一般同市场条件等因素有关。当市场条件等因素发生变化时,cj也会随之而变化。约束条件中的 aij随工艺条件等因素的变化而改变,bi的值则同的能力等因素有关。线性规划中灵敏度分析所要解决的问题是:当这些数据中的一个或几个发生变化时,最优解将会发生怎样的变化。或者说,当这些数据在一个多大的范围内变化时最优解将不发生变化。
本文相关文章:
电大金融学毕业论文(金融学毕业论文写什么好大概什么方向比较新颖,有研究价值)
2024年8月19日 22:40
新闻自由论文(请教高人新闻专业的毕业论文有没有新颖的好的选题)
2024年8月10日 20:00
更多文章:
生态工业示范园区规划指南的园区规划的指导思想和基本原则?生态工业示范园区规划指南的园区规划的步骤
2024年3月7日 21:00
十九届六中全会开幕式直播(十九届六中全会将在京召开,这次会议有多重要)
2024年5月1日 02:30
市场经济法律法规体系由几个部分组成?经济法规在秦朝经济立法中有哪些
2024年7月5日 01:00
物理学史论文(物理学家的故事或物理学史的读书(体会)报告,3000字的论文急用谢谢)
2024年9月27日 04:20