五年级数学下册(五年级下册数学书内容有哪些)
本文目录
- 五年级下册数学书内容有哪些
- 五年级下册数学重点
- 五年级下册数学重要知识点
- 五年级下册数学内容有哪些
- 数学五年级下册所有知识大全
- 五年级下册数学教案大全人教版简单
- 五年级下册数学教案
- 小学五年级下册数学主要学什么
- 五年级下册数学总结(人教版)
- 五年级下册数学题有哪些
五年级下册数学书内容有哪些
五年级下册数学书内容有如下:
一、第一部分:《分数乘法》
1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。
3、计算时,可以先约分再计算。
4、理解打折的含义。例如:九折,是指现价是原价的十分之九;九五折,是指现价是原价的百分之九十五。
5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
二、第二部分:《分数除法》
1、倒数。如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。
2、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。
3、一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
三、第三部分:《长方体》
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。在一个长方体中,相对的面完全相同,相对的棱长度相等。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
3、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
四、第四部分:《分数的混合运算》
分数混合运算的运算顺序与整数混合运算的运算顺序相同。先乘除后加减,有括号的先算括号里面的。最后结果是最简分数。
五、第五部分:《百分数》
1、百分数的意义。百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。
2、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数:可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
五年级下册数学重点
五年级下册数学知识要点:第一单元:图形的变换 1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。 2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。 3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。 第二单元:因数与倍数 1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。 2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。 3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。 4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。 5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。 6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。 7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。 8. 四则运算中的奇偶规律: 奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数 奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数 偶数-奇数=奇数 9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。 10. 1既不是质数,也不是合数。 11. 自然数按照因数的个数多少,可以分为1、质数、合数;按是否是2的倍数,可以分为奇数、偶数。 12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 第三单元:长方体和正方体 1. 正方体也叫立方体。 2. 长方体的特征是:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。 3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。 5. 正方体的特征是:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。 6. 长方体的棱长总和=(长+宽+高)×4 7. 正方体的棱长总和=棱长×12 8. 长方体六个面的面积总和叫做长方体的表面积。 9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。 10. 长方体的表面积=(长×宽+长×高+宽×高)×2 11. 正方体的表面积=棱长2×6 12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4 13. 长方体的侧面积=底面周长×高 14. 物体所占空间的大小,叫做物体的体积。 15. 常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。 16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。 17. 长方体的体积=长×宽×高;用字母表示是V=abh 18. 正方体的体积=棱长3;用字母表示是V=a3 19. 长方体(或正方体)的体积=底面积×高=横截面积×长 20. 在工程上,1立方米简称1方。 21. 1个长方体或正方体,如果所有的棱长都扩大n倍,那么棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。 22. 棱长总和相等的长方体或正方体,正方体的体积最大。 23. 1立方米=1000立方分米;1立方分米=1000立方厘米。 24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位之间的进率是100;每相邻两个体积单位之间的进率是1000。 25. 容器所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。 26. 计量液体的体积,常用的容积单位是升和毫升,也可以写成L和ml。 27. 1升相当于1立方分米,1毫升相当于1立方厘米,所以1升=1000毫升。 28. 长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。所以容器的容积比体积要小一些。 29. 浸没在水中的物体的体积=现在水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度 30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。 第四单元:分数的意义和性质 1. 一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。 2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如3/7表示把单位“1”平均分成7份,取其中的3份。 3. 5/8米按分数的意义,表示:把1米平均分成8份,取其中的5份。按分数与除法的关系,表示:把5米平均分成8份,取其中的1份。 4. 把单位“1”平均分成若干份,表示其中一份的数叫分数单位。 5. 分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。 6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。 7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。 8. 分子比分母小的分数叫真分数。真分数小于1。 9. 分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。 10. 带分数包括整数部分和分数部分,分数部分应当是真分数。带分数大于1。 11. 把假分数化成带分数的方法是用分子除以分母,商是整数部分,余数是分子,分母不变。把带分数化成假分数的方法是用整数部分乘分母的积加原来的分子作分子,分母不变。 12. 整数可以看成分母是1的假分数。例如5可以看成是5/1。 13. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。 14. 几个数公有的因数叫做这几个数的公因数,其中最大的公因数叫作它们的最大公因数。最小公因数一定是1。 15. 几个数公有的倍数叫做这几个数的公倍数,其中最小的公倍数叫作它们的最小公倍数。没有最大的公倍数。 16. 求最大公因数或最小公倍数可以用列举法,也可以用短除法分解质因数。 17. 公因数只有1的两个数叫做互质数。分子和分母是互质数的分数叫做最简分数。最简分数不一定是真分数。 18. 除法计算的结果可以用分数表示,比较方便。如果计算结果可以约分的话,要化简成最简分数。 19. 如果两个数是倍数关系,那么它们的最大公因数是较小的数,最小公倍数是较大的数。 20. 如果两个数是互质关系,那么它们的最大公因数是1,最小公倍数是它们的积。 21. 数A×数B=它们的最大公因数×它们的最小公倍数。 22. 两个数是互质数的几种特殊情况有:1、1和任何数都是互质数;2、两个相邻的自然数一定是互质数;3、两个相邻的奇数一定是互质数;4、两个不同的质数一定是互质数;5、一个质数和一个不是它倍数的合数一定是互质数。 23. 把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。把几个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 24. 把分数化成小数的方法是用分子除以分母;把小数化成分数的方法是先写成分母是10、100……的分数,然后再进行约分。 25. 如果一个最简分数的分母除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。 26. 两个数的最大公因数等于两个数公有的质因数的积;两个数的最小公倍数等于两个数公有的质因数×它们各自独有的质因数。 27. 两个数的公因数,都是这两个数的最大公因数的因数;两个数的公倍数,都是这两个数的最小公倍数的倍数。希望我的回答能对你有所帮助咯。。。(*^__^*) 嘻嘻……
五年级下册数学重要知识点
五年级下册数学重要知识点有哪些呢?感兴趣的同学们快来和我一起看看吧。下面是由我为大家整理的“五年级下册数学重要知识点”,仅供参考,欢迎大家阅读。
五年级下册数学重要知识点
第一单元 方程
1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。等式》方程
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:
一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差
一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数
注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元 确定位置
1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,)第1个数表示第几列(x),第2个数表示第几行(),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行()上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行()上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元 公倍数和公因数
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号表示。几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。
4、两个素数的积一定是合数。举例:3×5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的.两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,=15,(15,5)=5;
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:=21,(3,7)=1;
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。=40,(5,8)=1;
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。=72,(9,8)=1;
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
拓展阅读:五年级上册数学知识点
第一单元 小数乘法
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)
变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c
减法:减法性质:a-b-c=a-(b+c)
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元 位置
8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。
第三单元 小数除法
10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。
11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32
15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。
第四单元 可能性
16、事件发生有三种情况:可能发生、不可能发生、一定发生。
17、可能发生的事件,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。
第五单元 简易方程
18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
19、a×a可以写作a·a或a ,a 读作a的平方 2a表示a+a
特别地1a=a这里的:“1“我们不写
20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
21、解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
22、10个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
23、所有的方程都是等式,但等式不一定都是等式。
24、方程的检验过程:方程左边=……
25、方程的解是一个数;解方程式一个计算过程。=方程右边 所以,X=…是方程的解。
第六单元 多边形的面积
26、公式:
正方形:
正方形的面积=边长X边长 S正=aXa=a2;
已知:正方形的面积,求边长;
长方形:
长方形的面积=长X宽;
S长=aXb
已知:长方形的面积和长,求宽;
平行四边形:
平行四边形的面积=底X高;
S平=aXh
已知:平行四边形的面积和底,求高 h=S平÷a;
三角形:
三角形的面积=底X宽高÷2;
S三=aXh÷2
已知:三角形的面积和底,求高;
H=S三X2÷a
梯形:
梯形形的面积=(上底+下底)X高÷2
S梯=(a+b)X2
已知:梯形的面积与上下底之和,求高
高=面积×2÷(上底+下底)
上底=面积×2÷高-下底
组合图形:
当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
27、平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
28、三角形面积公式推导:旋转
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2;
29、梯形面积公式推导:旋转
30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。
五年级下册数学内容有哪些
五年级下册数学内容有如下:
1、因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
2、倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
3、自然数按能不能被2整除分为:奇数、偶数。
奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
4、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4、6、8、9、10、12、14、15、16、18、20、22都是合数。
5、公因数、最大公因数。
几个数公有的因数叫这些数的公因数。其中最大的那个因数就叫它们的最大公因数。用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3。
数学五年级下册所有知识大全
小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全人教版五年级(下册)数学知识点一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6 用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。8、长方体的体积=长×宽×高 用字母表示:V=abh 长=体积÷(宽×高) 宽=体积÷(长×高) 高=体积÷(长×宽) 正方体的体积=棱长×棱长×棱长 用字母表示:V= a×a×a9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000 10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。12、容积:容器所能容纳物体的体积。13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米 14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。四、分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。9、最简分数:分子和分母只有公因数1的分数叫做最简分数。10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。五、分数的加法和减法1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。六、打电话1、逐个法:所需时间最多;2、分组法:相对节约时间;3、同时进行法:最节约时间。1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。6. 个位上是 0,2,4,6,8的数,都是2的倍数,也是偶数。7. 自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。8. 个位上是0或者5的数,都是5的倍数。9. 个位是0的数,既是2的倍数,又是5的倍数。10. 一个数各位上的和是3的倍数,这个数就是3的倍数。11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。12. 整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数13. 将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是12015. 奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数。17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴19. 长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。20. 长方体有12条棱,分为三组,相对的4条棱长度相等。21. 长方体有8个顶点。22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高23. 正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×4 25. 正方体棱长之和:棱长×1226. 长方体(正方体)6个面的总面积,叫做它的表面积。27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×228. 正方体表面积=棱长×棱长×629. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m330. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m331. 长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。35. 米表示(1) 把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)(2) 把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米36. 当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算37. 分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。38. 带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。39. A是B的几分之几?用A÷B40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。41. 几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。42. 如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。43. 分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。44. 几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。50. 分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。
五年级下册数学教案大全人教版简单
在教学的过程中,每个学期都会需要用到教案,那你准备好你的教案了吗?下面是由我为大家整理的“五年级下册数学教案大全人教版简单”,仅供参考,欢迎大家阅读本文。
五年级下册数学教案大全人教版简单(一)
【教学目标】
1、知识与技能
理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。
2、过程与方法
经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。
3、情感态度与价值观
感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。
【教学重点】
3的倍数特征。
【教学难点】
探究3的倍数特征的过程。教学过程
【教学过程】
一、以旧引新,竞赛导入
1、请说出2的倍数的特征、5的倍数的特征。
2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?
35 158 200 87 65 164 4122
既是2的倍数又是5的倍数的数有什么特征?
3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?
4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!
5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)
二、猜想探索,归纳验证
1、大胆猜想:猜一猜3的倍数有什么特征?
(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)
(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?
2、观察探索:出示第10页表格。
(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。
(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)
(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?
(4)问题启发:
大家再仔细看一看,3的倍数在表中排列有什么规律?
从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)
个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)
每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)
3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
4、验证结论
大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。
(1)尝试验证。(生写数,然后判断、交流、得出结论。)
(2)集体交流。
教师说一个数。如342,学生先用特征判断,再用计算器检验。
一个更大的数。4870599,学生先用特征判断,再用计算器检验。
5、巩固提高。
五年级下册数学教案大全人教版简单(二)
教学目标
1、体会小数混合运算的运算顺序和整数是一样的,会计算小数四则混合(以两步为主,不超过三步)
2、利用学过的小数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。
3、培养学生善于探讨数学问题的良好习惯,能够综合问题的能力。
教学重点
掌握小数四则混合运算的算法,会进行小数四则混合运算。
教学难点
通过解决具体问题理解运算间的联系。
教学过程
一、情境导入
师:前几天五年级同学对我们平时所产生的生活垃圾进行了调查研究,下面就是五年级两个班级的调查汇报情况。(课件出示教材情境图) 师:从这个调查汇报情况中你获得了哪些数学信息?
学生:五年级1班汇报信息:一个人4周可产生30.8千克生活垃圾。五年级2班汇报信息:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。
师:看到这些数学信息,你能提出哪些数学问题? 引导学生根据不同的信息提出不同的数学问题。
二、探究新知
1、研究连除、乘除混合运算。
根据学生提出的不同问题,教师有选择性地出示问题:一个人4周可产生30.8千克生活垃圾,那么一个人平均每天产生多少千克生活垃圾?
学生阅读题目后,教师提问:“要想求出一个人平均每天产生多少千克生活垃圾,需要什么书籍条件?题目中是否直接给出?用什么方法计算?”学生独立思考计算后,在小组内交流自己的想法。
小组汇报,学生可能会呈现的方法
一种方法:先计算4×7=28,算出四周一共多少天,再用30.8÷28算出平均一天产生多少垃圾。
另一种方法:先算每周产生多少千克垃圾,用30.8÷4=7.7,再用7.7÷7算出平均每天产生多少千克垃圾。
2、研究除、加混合运算。
出示问题2:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。与平时相比这个小区周末每天要多处理多少吨生活垃圾?
学生独立完成,教师要引导列分步算式的同学试着列出综合算式,根据其中的数量关系,运算出结果。
3、总结规律
引导学生面容两题中的三个综合算式,再一次得出结论:小数四则混合运算的顺序与整数四则混合运算顺序相同,整数运算定律在小数运算中同样适用。
三、巩固练习
完成教材第17页算一算
五年级下册数学教案大全人教版简单(三)
【教学目标】
1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学 生自主探索、独立思考、合作交流的能力。
4、让学生在学习 活动中体验到学习数学的乐趣,培养学习 数学的兴趣。
【重点难点】
质数、合数的意义。
教学过程:
【复习导入】
1、什么叫因数?
2、自然数分几类? ( 奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课 我们就来学习这种分类方法。
【新课讲授】
1、学习质数、合数的概念。
(1)写出1 ~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3、出示课本第14页例题1。
找出100以内的质数 ,做一个质数表。
(1)提问:如何很快 地制作一张100 以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
五年级下册数学教案大全人教版简单(四)
教材分析
例3是公因数、最大公因数在生活中的实际应用。教材通过创设用整块的正方形地砖铺满长方形地面的问题情境,应用公因数、最大公因数的概念求方砖的边长机器最大值。
学情分析
学生已掌握了公因数和最大公因数的概念及求法,本课内容主要是帮助学生通过分析,使学生发现这样的地砖必须即使16的因数又是12的因数。在此基础上学习本课不难。
教学目标
1.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
2.在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。
重点难点
初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。
方法指导
自主学习合作探究。
教学过程
一、激趣导入
(约5分钟)
课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。
二、自主学习
(约5分钟)
1.几个数()叫做这几个数的公因数,其中最大的一个叫做()
2.16的因数有(),24的因数有(),16和24的公因数是(),最小公因数是(),最大公因数是()。
3.A=225,B=235,那么A和B的最大公因数是()。
4.用短除法求出99和36的最大公因数。
三、合作交流
(约13分钟)
小组合作学习教材第62页例3。
1.学具操作。
用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。
2.仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。
3.总结。
解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。
四、精讲点拨
(约8分钟)
根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。
五、测评总结
(约9分钟)
达标练习
(1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?
(2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?
(3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?
六、全课总结
这节课你都学到了什么知识?有什么收获?
七、作业布置
练习十五5,6题。
板书设计:
最大公因数(2)
铺砖问题:求公因数
五年级下册数学教案大全人教版简单(五)
教学目标
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点
1、容积的概念。
2、容积与体积的关系。
教学难点
容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶、纸杯。
教学过程
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是()。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3)
②1升=1立方分米
1000毫升=1000立方厘米
1毫升(mL)=1立方厘米(cm3)
练一练:
1、8L=()mL3500mL=()L15000cm3=()mL=()L
1、5dm3=()L
(4)小组活动:
a、将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
b、估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2=40(立方分米)40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1、4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2、5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16。
五年级下册数学教案
关于五年级下册数学教案5篇
作为一名人民教师,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。那么五年级下册数学教案怎么写呢?下面是我给大家整理的五年级下册数学教案,希望大家喜欢!
五年级下册数学教案精选篇1
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点:
1.长方体和正方体的特征;
2.立体图形的识图。
教学难点:
1.长方体和正方体的特征;
2.立体图形的识图。
教具准备:
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画。 学具:长方体和正方体纸盒。
教学设计:
一、复习准备
1.请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形。
2.教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。 教师提问:这些物体的各部分都在一个面上吗?(不是) 教师明确:这些物体的各部分不在一个面上,它们都是立体图形。
3.引入:今天这节课我们要进一步认识长方体有什么特征。
教师板书:长方体的认识
二、学习新课
(一)长方体的特征
1.请同学取出自己准备的长方体。 教师提问:请用手摸一摸长方体是由什么围成的? 请用手摸一摸两个面相交处有什么? 请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
2.参考讨论提纲来研究长方体的特征。
【演示动画“长方体的特征”】
讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶点:8个。
教师:请完整地说一说长方体的特征。
3.比较立体图形与平面图形的区别。
老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢? 请观察,你能看到几个面?哪几个面? 你能看见几条棱?哪几条棱?
教师介绍长方体的画法: 看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。
4.出示长方体框架观察。
教师提问:框架上的12条棱可以分几组?怎样分? 相交于一个顶点的三条棱长度相等吗?
教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(二)正方体特征
1.【演示动画“正方体的特征”】
教师提问:看一看新得到的长方体与原来长方体比较有什么变化? (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)
2.对照长方体的特征学生自己研究正方体的特征。 学生讨论、归纳后,
教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
3.学生讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
(正方体是特殊的长方体)
五年级下册数学教案精选篇2
【设计理念】
数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。
【教学内容】
人教版五年级下册第23~24页“质数与合数”。
【学情与教材分析】
本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。
【教学目标】
1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。
2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。
3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。
【教学准备】
课件;练习纸每生一张。
【教学过程】
活动一:构建质数和合数概念
1.引导学生按要求列出乘法算式:“因数用整数、不用1”。
教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。
学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。
2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。
教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。
【设计意图】
“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。
活动二:讨论质数和合数的特征
1.师:“从这些乘法算式中,你发现了什么?
学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;
合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。
2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。
师:观察因数的个数,你又发现了什么?
从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。
3.根据学生回答板书。
4.讨论:“1”是质数还是合数?
学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。
师把板书写完整。
5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?
【设计意图】
预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。
活动三:应用概念寻找或判断质数
1.继续寻找30以内的其它质数。
2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。
3.下面的说法正确吗?说说你的理由。
⑴所有的奇数都是质数。()
⑵所有的偶数都是合数。()
⑶在1、2、3、4、5……中,除了质数以外都是合数。()
⑷两个质数的和是偶数。()
【设计意图】
通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。
活动四:拓展延伸深化概念
1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)
⑴两个质数的和是10,积是21,他们各是多少?
⑵两个质数的和是20,积是91,他们各是多少?
⑶最小的质数是?最小的合数是?
2.在括号里填上质数:
8=()+()12=()+()28=()+()
3.数学小阅读:哥德巴赫猜想。
同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。
请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。
【设计意图】
在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。
活动五:总结
这节课你有哪些收获?
五年级下册数学教案精选篇3
教学内容:
五年级下册教科书第65—66页。
教学目标:
1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。
2.在探究过程中,培养学生观察、比较、归纳等探究的能力。
3.体会知识来源于实际生活的需要,激发学习数学的积极性。
教学重点:
经历探究过程,理解和掌握分数与除法的关系。
教学难点:
通过操作,让学生理解一个分数可以表示的两种意义。
教材分析:
《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。
本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。
教具学具:
课件,模型。
教学设计
一、导入
师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?
生:月饼。
师:你们的课外知识真丰富,你们喜欢吃月饼吗?
生:喜欢。
师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?
生:2块,6÷3=2(块)。(板书)
师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?
生:0.5块,1÷2=0.5(块)。(板书)
师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?
师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?
生:七分之五。
师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?
生:可以用分数表示。
师:在表示整数除法的商时,用谁作分母?用谁做分子?
生:用被除数作分子,除数作分母。
师:那么分数与除法有什么样的关系呢?谁能用语言概括下?
生:被除数除以除数等于除数分之被除数。
师:你表达得这么清晰流畅,了不起!
师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?
生:a÷b= a/b(b≠0)(板书)
师:这个关系式里每个数的范围要注意什么?
生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。
师:想一想分数与除法有哪些联系和区别?
教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。
师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)
二、巩固练习
师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?
1.1.用分数表示下面各式的商。
(1)3÷2 =()
(2)2÷9 =()
(3)7÷8 =()
(4)5÷12 =()
(5)31÷5 =()
(6)m÷n =()n≠0
2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖
的( )是相等的
三、课堂小结
说说你的收获是什么?重点说说分数与除法的关系。
结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!
四、作业布置
练习十二第1,3题。
板书设计
分数与除法
被除数÷除数=被除数/除数
a÷b= a/b(b≠0)
教学反思
这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。
五年级下册数学教案精选篇4
教学目标:
1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。
2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
重、难点:
1、理解图形旋转变换的含义。
2、探索图形旋转的特征和性质。
3、能在方格纸上将一个简单图形旋转90°。
教学准备:
多媒体课件方格纸
教学过程:
一、情景导入
同学们,你们喜欢做游戏吗?今天老师给你们带来一个魔方,再做这个游戏时,最常用到的操作时什么?(旋转)
请同学们用手示范一下怎样进行旋转?(学生用手势演示)
问:你们在做旋转手势时为什么有的向左旋转,有的向右旋转?(因为有的是顺时针旋转,有的是逆时针旋转。)
集体联系顺时针旋转90度和逆时针旋转90度。
请一人到投影前操作魔方。其他同学提示其具体的旋转方向。
师:刚才同学们在做游戏的过程中,反复提到一个词“旋转”,这节课,咱们就来共同研究“旋转”。
板书课题:旋转
二、明确概念
1、联系生活
师:生活中,你还见过哪些旋转现象呢?
生:风扇、陀螺、钟表、车轮、风车……
课件出示几种旋转现象。
师:同学们说的这几种都是旋转现象,那么旋转有怎样的特征和性质呢?我们借助最常见的钟表来进行研究吧。
2、学习例3.
(1)认识线段的旋转,理解旋转的含义。
出示钟表实物。
师:请同学们观察钟表的指针,描述指针从“12”到“1”师怎样旋转的。(指针从“12”绕点O顺时针旋转30°到“1”)
师演示指针由“1”到“3”。
问:这次指针又是如何旋转的?(指针从“1”绕点O顺时针旋转60°到“3”)
师演示指针由“3”到“6”。
同桌互相说一说:指针从几开始?是绕哪个点旋转的?怎样旋转?旋转了多少度?
(2)明确旋转要素
旋转物体起止位置绕哪一点旋转方向旋转度数
板书:点方向度数
师:要想清楚说明旋转现象,明确以上几个要素最为重要。
三、探索图形旋转的特征和性质
1、观察风车的旋转过程。(出示课件)
请学生说一说,在风的吹动下,风车是如何旋转的。
风车绕点O逆时针旋转90°。
思考:你是怎样判断风车旋转的角度呢?
小组交流观察到的现象。
一是由图1到图2,风车绕点O逆时针旋转了90°;二是根据三角形变换的位置判断风车旋转的角度
三是根据对应的线段判断风车旋转的角度;四是根据对应的点判断风车旋转的角度。
2、小结
通过观察,我们发现风车旋转后,不仅每个三角形都绕点O逆时针旋转了90°,而且,每条线段,每个顶点,都绕点O逆时针旋转了90°.
3、概括旋转的特征和性质。
师:刚才通过观察我们发现,风车旋转后,每个三角形的位置都变了,那么什么没有变呢?(三角形的形状、大小没有变;点O的位置没有变;对应线段的长度没有变;对应线段的夹角没有变。)
四、绘制图形
1、自主画图。
我们已经了解了一个图形旋转的全过程,想不想自己试着画一画呢?
(1)出示例4方格纸。
(2)请学生看清图形。
(3)说一说你是怎样画的。
引导学生明确:对应点与点O所连线段的夹角都是90°;对应点到点O的距离都相等。
学生独立完成。
(4)作品展示,交流画法。
2、总结画法。
我们在画一个旋转图形时,首先要确定它周围的点,然后找到这个图形各个点的对应点,最后连线。
五年级下册数学教案精选篇5
《分数混合运算(一)》是北师大版五年级下册第五单元《分数混合运算》第一课时教学内容。下面结合实际教学反思如下:
优点:
1、充分利用情境图创设问题情境
能够创造性地使用教材,把问题情境改为学生所熟悉的校园特色团队作为学习素材,以此激励学生的学习情感,激发学生的学习兴趣。建构主义认为:学习是学生主动的建构活动,学习应与一定的情境相联系,在实际情境下进行学习,可以使学生利用原有知识和经验同化当前要学习的新知识。
在新课程背景下,计算教学不再是单纯的技能训练,而是把它作为解决问题的一个组成部分。新课前充分利用教材中的情景图创设一个问题情境,让学生自己提出问题,自主探索解决问题的方法和途径,并进行相互之间的交流,对自己或他人的活动过程、结果进行评价反思,从而使学生正确地选择了计算方法,按照一定的运算顺序进行计算,列出分步、综合算式也就是建立数学模型。学生在观察、思考、操作、交流等活动中,感受运算顺序的自然生成。通过这种教学方式,成功地促进了学生学习方式的生成。
2、关注学生的学情
学生在解答所提出的问题时,自觉地利用了分数(一步计算)的解答方法,通过画示意图、写等量关系、找到了解题步骤与关键,通过由先分步,再列出综合算式这一过程,学生很自然地将“整数的运算顺序”迁移到“分数的运算顺序”,这足以说明学生有自己丰富的数学现实,并能用之进行自由的、多角度的思考,实现知识的自我建构。注重对学生的课堂生成的及时捕捉和对比反馈,让学生在观察、交流、比较中,进一步体会分数连乘、连除或乘除混合运算的计算方法,同时注意培养学生良好的计算习惯,注意格式的规范,帮助学生养成良好的计算习惯。
3、重视数学的体验发展提升数学素养
在教学过程中,我设计了让学生动手、动脑、动口的数学活动,使学生在活动中去体验、去感受、去应用,从而加深对数学的理解。如在“通过画示意图,列分步、综合算式,着重说明综合算式先算什么,再算什么,从而让学生理解算理,掌握运算顺序”这个环节上和通过让学生分组解答不同的提问,回答这道题要先求什么等思维活动,来加深学生对数学的体验。在学完本节课后,让学生谈这节课的收获,使学生又体验到丰富的数学内容,而且在这种氛围中,师生之间的情感也达到了和谐统一。
不足:
1、教师放手不够,应当给予学生更多的观察、思考、比较、分析,和充分表达的时间,更好地确保学生的主体地位。
2、教师在教学中对电脑操作不熟练,所以造成一些时间的浪费,影响了学生的情绪,也影响了老师的情绪。
小学五年级下册数学主要学什么
五年级属于一个非常时期,面临小升初的压力必须要在这一时期将数学成绩有所提高.另外五年级的数学难度有所提高,下一步是迎接初中.五年级在其中发挥重要的作用.那小学五年级数学辅导具体有哪些.
(不外乎)
1.对症下药.首先要做的是找到孩子较弱的内容,并为弱小的模块提供建议,以便有效地提高目标效率.
2.及时整合审查.根据记忆曲线,如果不及时复习,很容易忘记知识点,因此有必要及时复习并不断巩固知识点,以便记住知识.记住的知识在复习,没记牢的知识加强记忆.
3.总结问题解决方法.有一种方法可以做数学,反向推理学习五年级数学.问题中心方法、散射方法等.不同的问题可以采用不同的方法来解决.
4.循序渐进.用阶梯法教学,让学生不会立刻接受太难的知识点,而是从简单的问题开始,先建立学生的自信心,然后慢慢增加难度.
除了以上的方法之外,学好数学首先就是计算能力的过关,整数运算、小数运算、分数运算都要做到准确无误.有很多的同学计算的速度相当的慢,原因就是没有掌握计算的法则,导致老是犯错误或者是犯同样的错误,使做题的效率大大减低.所以很有必要进行将强计算,并掌握计算的技巧和规律.
基础知识和方法如果能掌握好,对于数学来说也就不那么难了.在学习了合数和质数之后,会出现判断一个数是合数或者是质数,而对于某个题目来说,常常有很多个思路能够解决,但是学生需要掌握每个方法和思路的要点,才能在考试中做到准确无误.平时的积累和学习是有效掌握方法和总结思路的重要方法,所以学生要养成良好的习惯.
(难度)
对于孩子的学习往往使家长感到很头大,此时可以在假期借助辅导班来对孩子进行全面的辅导,从学习的要点到学习方法,还有就是学习习惯的养成利用好假期,使孩子在假期中不浪费时间,提高数学的成绩.小学五年级数学辅导单单依靠家庭有时候是不能完成的,家长朋友给孩子找个辅导班或者是一对一家教,利用假期时间,制定好学习计划,让孩子严格按照计划按部就班坚持去做,相信会有很大的收获.五年级下册数学总结(人教版)
人教版五年级下册数学复习提纲 第一单元 观察物体 1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。 2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。 由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。 3、从一个方向看到的图形摆立体图形,有多种摆法。 4、从多个角度观察立体图形 先根据平面图分析出要拼搭的立体图形有几层; 然后确定要拼搭的立体图形有几排; 最后根据平面图形确定每层和每排的小正方体的个数。 二 因数和倍数 1、整除:被除数、除数和商都是自然数,并且没有余数。 大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 找因数的方法: 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,最小的倍数是它本身。 2、自然数按能不能被2整除来分:奇数 偶数 奇数:不能被2整除的数 偶数:能被2整除的数。 最小的奇数是1,最小的偶数是0. 个位上是0,2,4,6,8的数都是2的倍数。 个位上是0或5的数,是5的倍数。 一个数各位上的数的和是3的倍数,这个数就是3的倍数。 能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。 3、自然数按因数的个数来分:质数、合数、1. 质数:有且只有两个因数,1和它本身 合数:至少有三个因数,1、它本身、别的因数 1: 只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,最小的合数是4。 20以内的质数:有8个(2、3、5、7、11、13、17、19) 100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97 4、分解质因数 用短除法分解质因数 (一个合数写成几个质数相乘的形式) 5、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。 2 用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。 两数互质的特殊情况: ⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质; ⑷2和所有奇数互质; ⑸质数与比它小的合数互质; 如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 6、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。 三 长方体和正方体 【概念】 1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。 2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。 4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。 5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。 长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽 -高 a=L÷4-b-h 宽=棱长总和÷4-长 -高 b=L÷4-a-h 高=棱长总和÷4-长 -宽 h=L÷4-a-b 正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12 6、长方体或正方体6个面和总面积叫做它的表面积。 长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab 无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh) 正方体的表面积=棱长×棱长×6 S=a×a×6 6、物体所占空间的大小叫做物体的体积。 长方体的体积=长×宽×高 V=abh 长=体积÷宽÷高 a=V÷b÷h 宽=体积÷长÷高 b=V÷a÷h 高=体积÷长÷宽 h= V÷a÷b 正方体的体积=棱长×棱长×棱长 V=a×a×a= a3 7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。 常用的容积单位有升和毫升也可以写成L和ml。 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 8、a3读作“a的立方”表示3个a相乘,(即a·a·a) 【体积单位换算】 高级单位 低级单位 低级单位 高级单位 进率: 1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升 1立方厘米=1毫升 1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米 重量单位进率,时间单位进率,长度单位进率 计算不规则物体的体积: ×进率 ÷进率 ① 容器的底面积×上升那部分水的高度。 计算方法 ② 放入物体后的体积 — 原来水的体积 被浸没物体的体积等于上升那部分水的体积 四 分数的意义和性质 分数的产生 分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份 分数与除法 :分子(被除数),分母(除数),分数值(商) 真分数 真分数小于1 真分数与假分数 假分数 假分数大于1或等于1. 带分数 (整数部分和真分数) 假分数化带分数、整数(分子除以分母,商作整数部分 余数作分子) 分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数, 分数的基本性质 分数的大小不变。 通分、通分子:化成分母不同,大小不变的分数(通分) 最大公因数 约 分 求最大公因数 最简分数 分子分母互质的分数(最简真分数、最简假分数) 约分及其方法 最小公倍数 通 分 求最小公倍数 分数比大小 (通分、通分子、化成小数) 通分及其方法 小数化分数 小数化成分母是10、100、1000的分数再化简 分数和小数的互化 分数化小数 分子除以分母,除不尽的取近似值 最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。 分数化简包括两步:一是约分;二是把假分数化成整数或带分数。 21=0.5 41=0.25 43=0.75 51=0.2 52=0.4 53=0.6 54=0.8 81=0.125 83=0.375 85=0.625 87=0.875 201=0.05 251=0.04。 五 物体的运动 一、平移 物体或图形平移后本身的形状、大小和方向都不会改变。 二、轴对称 1、轴对称图形: 把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称图形的特征和性质: ①对应点到对称轴的距离相等; ②对应点的连线与对称轴垂直; ③对称轴两边的图形大小、形状完全相同。 三、 旋转 1、物体旋转时应抓住三点:① 旋转中心; ② 旋转方向; ③ 旋转角度。 2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。 六 分数的加法和减法 同分母分数加、减法 (分母不变,分子相加减 ) 分数数的加法和减法 异分母分数加、减法 (通分后再加减) 分数加减混合运算 带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。 七 统计与数学广角 众数 一组数据中出现次数最多的数叫众数。 众数能够反映一组数据的集中情况。 统计 在一组数据中,众数可能不止一个,也可能没有众数。 复式折线统计图 综合应用 打电话的最优方案 中位数的求法:1、按大小排列。 2、如果数据的个数是单数,那么最中间的那个数就是中位数; 如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。 平均数的求法:总数÷总份数=平均数 八 数学广角找次品 数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次 4~9个物体,保证能找出次品需要测的次数是2次 10~27个物体,保证能找出次品需要测的次数是3次 28~81个物体,保证能找出次品需要测的次数是4次 82~243个物体,保证能找出次品需要测的次数是5次 244~729个物体,保证能找出次品需要测的次数是6次
五年级下册数学题有哪些
五年级下册数学简便计算题及答案含解析
班级: 姓名: 一、口算下面各题。(23分) 10-2.65= 0.9×0.08= 528-349= 6+14.4= 24÷0.04= 12.34-2.3= 0÷3.8= 0.77+0.33= 7÷1.4= 67.5+0.25=7.2÷8×4= 5-1.4-1.6= 400÷125÷8= 1.9×4×0.5= 80×0.125= 3× = 6 6= 2 -( + )= 10 2= 3.2×7÷3.2×7= ( - )×12= 187.7×11-187.7= 1- 62.5%= 二、写出下列每题在简便运算时所运用的定律或性质(12分) 4 +3.2+5 +6.8 25×(8×0.4)×1.25 7 -(2 - ) ( ) ( ) ( ) ( + + )×72 93.5÷3 16÷2.5 ( ) ( ) ( ) 三、用简便方法计算。(65分) 1125-997 998+1246+9989 (8700+870+87)÷87 125×8.8 1.3+4.25+3.7+3.75 17.15-(3.5-2.85) 3.4×99+3.4 4.8×1.01 0.4×(2.5÷73) (1.6+1.6+1.6+1.6)×25 ( + - )÷ 12.3-2.45-5.7-4.55 2 + 0.125×0.25×64 64.2×87+0.642×1300 78×36+7.8×741-7 17+ 8 0.125× +0.5 2.42 +4.58 -43 25÷100 4.25-3 -(2 -1 ) (1)1.25*17.6+36.1/0.8+2.36*12.5 1.25*17.6+36.1/0.8+2.36*12.5 =(5/4)*17.6+36.1*(5/4)+23.6*(50/4) =176/8+361/8+236/8 =773/8=96.625 (2)7.5*2.3+1.9*2.5 7.5*2.3+1.9*2.5 =7.5*(1.9+0.4)+1.9*2.5 =(7.5+2.5)*1.9+7.5*0.4 =19+3 =22 (3)2004/2003*2005 2004/2003*2005 =(2004/2003)*(2003+2) =2004+4008/2003 (4)276*543-267/276+543*275 276*543-267/276+543*275 =543*(276+275)-267/276 =543*551-267/276 1)五十二又二十五分之十一×79.45+159×47.56+七十九又二十分之十一×52.44 =52.44×79.45+159×47.56+79.55×52.44 =52.44×(79.45+79.55)+159×47.56 =52.44×159+159×47.56 =159×(52.44+47.56) =159×100 =15900 3)2002+2001-2000-1999+1998+1997-1996-1995+……+2+1 =(2002-2000)+(2001-1999)+(1998-1996)+(1997-1995)+……+(6-4)+(5-3)+2+1 =2+2+2+2+……+2+2(从3-2002共2000个数,所以有1000个2)+2+1 =1000×2+2+1 =2003 4,5两题均用到一个转换式1/(A×B)=1/(B-A)×(1/A-1/B) 如1/15=1/(3×5)=1/(5-3)×(1/3-1/5)=1/2×(2/15)=1/15可验证一下 4)(1×2分之一)+(2×3分之一)+(3×4分之一)+……+(10×11分之一) =1/(1×2)+1/(2×3)+1/(3×4)+……+1/(10×11) =(1-1/2)+(1/2 - 1/3)+(1/3 - 1/4)+……+(1/10 - 1/11) =1-1/11 =10/11 5)三分之一+十五分之一+三十五分之一+六十三分之一+九十九分之一 =1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11) =1/2×(1-1/3)+1/2×(1/3-1/5)+1/2×(1/5-1/7)+1/2×(1/7-1/9)+1/2×(1/9-1/11) =1/2×(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11) =1/2×(1-1/11) =1/2×10/11 =5/11 6)一又二分之一-六分之五+十二分之七-二十分之九+三十分之十一-四十二分之十三+五十六分之十五 (根据提示,1又1/2=1+1/2,+1/2+1/3=5/6……) =(1+1/2)-(1/2+1/3)+(1/3+1/4)-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)+(1/7+1/8) =1+ 1/2 - 1/2 - 1/3 + 1/3 + 1/4 - 1/4 - 1/5 + 1/5 + 1/6 - 1/6 - 1/7 + 1/7 + 1/8 =1+1/8 =9/8 仔细看一下,不会很难,都可以简便算的。你自己看一下,有些题目化成分数会好算些,我不是5年级的,不知道你们学的和我们是否一样,只能找一些,抱歉,请原谅。
五年级下册数学的简便计算题120
1. 5/2 -( 3/2 + 4/5 ) 2. 7/8 + ( 1/8 + 1/9 ) 3. 5/6 + ( 1/2 + 2/3 ) 4. 9/7 - ( 2/7 - 10/21 ) 5. 3/7 + 49/9 + 4/7 6. 8/9 + 15/36 + 3/27 7. 5/2 - ( 3/2 + 4/5 ) 8. 7/8 + ( 1/8 + 1/9 ) 9. 9/7 - ( 2/7 - 10/21 ) 10. 1/5 + ( 3/7 + 8/10 )
简便运算: 1) 500+(407+0) 2) 386+382+114 3) 42+(91+158+109) 4) (87+103+113)+97 5) (246+387+154)+13 6) 49+(71+151+129) 7) 255+(79+45) 8) (169+39+131)+261 9) 219+175+181+225 10) 14+498+486 11)84×101 12)(300+6)×12 13)504×25 14)25×(4+8) 15)78×102 16)125×(35+8) 17)25×204 18)(13+24)×8 19)99×64 20)99×13+13
五年级下册数学简便计算题100道要有答案, 在哪里找五年级下册数学简便计算题的答案。
一、口算下面各题
10-2.65= 0.9×0.08= 528-349= 6+14.4= 24÷0.04=
12.34-2.3= 0÷3.8= 0.77+0.33= 7÷1.4= 67.5+0.25=7.2÷8×4= 5-1.4-1.6=
00÷125÷8= 1.9×4×0.5=
80×0.125= 3× = 6 6= 2 -( + )= 10 2=
3.2×7÷3.2×7= ( - )×12= 187.7×11-187.7= 1- 62.5%=
二、写出下列每题在简便运算时所运用的定律或性质
4 +3.2+5 +6.8 25×(8×0.4)×1.25 7 -(2 - )
( ) ( ) ( )
( + + )×72 93.5÷3 16÷2.5
( ) ( ) ( )
720÷16÷5 630÷42 456-(256-36)
102×35 98×42 158+262+138 375+219+381+225
5001-247-1021-232 (181+2564)+2719 378+44+114+242+222
276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017
99+999+9999+99999 7755-(2187+755) 2214+638+286
3065-738-1065 899+344 2357-183-317-357
2365-1086-214 497-299 2370+1995
数学简便计算题及答案五年级
(1)2.5*32*0.125 =(2.5*4)*(8*0.125) =10*1 =10 (2)3.5-7+6.5 =3.5+6.5-7 =3 (3)1.2×2.5+0.8×2.5 =2.5(1.2+0.8) =25 (4)8.9×1.25-0.9×1.25 =1.25(8.9-0.9) =10 (5)12.5×7.4×0.8 =12.5×0.8×7.4 =74 (6)6.5×9.5+6.5×0.5 =6.5×(9.5+0.5) =6.5×10 =65 (7)0.35×1.6+0.35×3.4 =0.35*(1.6+3.4) =0.35*5 =1.75 (8)6.72-3.28-1.72 =6.75-(3.28+1.72) =6.75-5 =1.75 (9)0.45+6.37+4.55 =0.45+4.55+6.37 =5+6.37 =11.37 (10)28×12.5-12.5×20 =(28-20)*12.5 =8*12.5 =100 (11)23.65-(3.07+3.65) =23.65-3.65-3.07 =20-3.07 =16.93 (12)(4+0.4×0.25)8×7×1.25 =(4+1)*7*10 =5*7*10 =350 (13)1.65×99+1.65 =1.65*(99+1) =1.65*100 =165 (14)27.85-(7.85+3.4) =27.85-7.85+3.4 =20+3.4 =23.4 (15)48×1.25+50×1.25×0.2×8 7.8×9.9+0.78 =7.8*(9.9+0.1) =7.8*10 =78 (16)4.8×46+4.8×54 =(46+54)*4.8 =100*4.8 =480 (17)673-327-173 =673-(327+173) =673-500 =173 (18)4.44*2.5 =1.11*(4*2.5) =1.11*10 =11.1 (19)3.5÷1.4 =(3.5÷0.7)÷(1.4÷0.7) =5÷2 =2.5 (20)1+2+3+4+5......+99+100 =(1+99)+(2+98)+(3+97)+......+(49+51)+50 =(100÷2-1)*100+50 =4900+50 =4950 这样可以么?
数学五年级下册简便计算题大全带答案
例1、5.76+13.67+4.24+6.33 =(5.76+4.24)+(13.67+6.33) =10+10 =20 例2、37.24+23.79-17.24 =37.24-17.24+23.79 =20+23.79 =43.79 例3、 4×3.78×0.25 =4×0.25×3.78 =1×3.78 =3.78 例4、 125×246×0.8 =125×0.8×246 =100×246 =24600 例5、(2.5+12.5)×40 =2.5×40+12.5×40 =100+500 =600 例6、3.68×4.79+6.32×4.79 =(3.68+6.32)×4.79 =10×4.79 =47.9 例7. 26.86×25.66-16.86×25.66 =(26.86-16.86) ×25.66 =10×25.66 =256.6 例8、 5.7×99+5.7 = 5.7×(99+1) =5.7×100 =570 例9、34×9.9 =34×(10-0.1) =34×10-34×0.1 =340-3.4 =336.6 例10、 57×101 =57×(100+1) =57×100+57×1 =5757 例11、7.8×1.1 =7.8×(1+0.1) =7.8×1+7.8×0.1 =7.8+0.78 =8.58 例12、25×32 =25×4×8 =100×8 =800 例13、125×0.72 =125×8×0.09 =1000×0.09 =90 例14、87×2/85 =(85+2) ×2/85 =85×2/85+2×2/85 =2+4/85 =2又4/85 例15、56.5-3.7-6.3 =56.5-(3.7+6.3) =56.5-10 =46.5 例16、32.6÷0.4÷2.5 =32.6÷(0.4×2.5) =32.6÷1 =32.6 例16、86.7×0.356+1.33×3.56 =8.67×3.56+1.33×3.56 =(8.67+1.33)×3.56 =10×3.56 =35.6 例17、15.6÷4-5.6×1/4 =15.6×1/4-5.6×1/4 =(15.6-5.6)×1/4 =10×1/4 =2又1/2 例18、16/23×27+16×19/23 =27/23×16+16×19/23 =16×(27/23+19/23) =16×2 =32
五年级下册数学脱式计算题及答案
脱式计算即递等式计算,把计算过程完整写出来的运算,也就是脱离横式的计算。在计算混合运算时,通常是一步计算一个算式(逐步计算,等号不能写在原式上),要写出每一步的过程。一般来说,等号要往前,不与第一行对齐。也就是离开原式计算。(脱字念tuo)主要掌握的是记住要先算乘、除法,后算加、减法。在乘除法连继计算时中,要按从左往右的顺序依次计算。遇到括号,要首先计算括号内部。在脱式过程中要按运算顺序划出运算顺序线,还要做到“三核对”,一要核对从书上把题抄到作业本上数字、符号是否抄对。二要核对从横式抄到草稿竖式的数字、符号是否抄对。三要核对把草稿竖式上的得数,抄到横式上是否抄对,小数点是否点对地方,有无遗漏。
本文相关文章:
五年级综合实践教案(五年级综合实践课活动教案《怎样美化教室》)
2024年9月15日 08:20
我的长生果教案(小学五年级语文上册有趣的汉字《仓颉造字》有哪些第三、四课时)
2024年8月31日 11:10
五年级上册《我的心爱之物》(五年级我的心爱之物优秀作文【10篇】)
2024年8月24日 13:40
八年级音乐教学计划(初中小学音乐教学计划 一年级,二年级,三年级,四年级,五年级,六年级,八年级音乐教学计划 音乐教学工作计划)
2024年8月9日 10:50
五年级上册数学期末卷子(含答案)(苏教版五年级数学上册期末试卷附带答案)
2024年8月5日 09:30
小苗与大树的对话教案(人教版小学五年级语文上册集体备课教案)
2024年6月26日 21:10
走遍天下书为侣小练笔(小学五年级第三课走遍天下书为侣的小练笔怎么写300字)
2024年6月10日 15:50
更多文章:
吴孟超曾捐赠600万元用于疾病研究(吴孟超曾将600万奖励全部用于科研,他的身上有哪些值得我们学习的精神)
2024年8月19日 16:50
50句失落伤感心情句子 失落伤感句子?不开心伤感语录说说句子
2024年8月25日 09:30
鼠年春节手抄报少字又漂亮了(关于简单又字少迎新年的手抄报 迎新年手抄报)
2024年8月17日 13:20
你走之后,下的雨像是在送你远行, 雨过之后就知道这几句,这是什么歌?刘心的《雨过之后》的歌词
2024年7月5日 20:30
外研版高中英语(外研版高中英语教材共几册册,高一学几册,高二学几册呢选修6-8学校一般都讲吗辽宁的,)
2024年3月29日 18:00